Reduction Methods of Attributes Based on Improved BPSO

Guanyu Pan, Da-you Liu, Hui Yan
{"title":"Reduction Methods of Attributes Based on Improved BPSO","authors":"Guanyu Pan, Da-you Liu, Hui Yan","doi":"10.1109/KAM.2009.202","DOIUrl":null,"url":null,"abstract":"This paper proposed the binary particle swam optimization method based on simulated annealing and weak population mutation. We applied this method to casing damage forecast of oil field. Using our new algorithm, attributes reduce to 12 from original 62. It becomes possible to forecast using these 12 attributes as the inputs.","PeriodicalId":192986,"journal":{"name":"2009 Second International Symposium on Knowledge Acquisition and Modeling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Symposium on Knowledge Acquisition and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAM.2009.202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposed the binary particle swam optimization method based on simulated annealing and weak population mutation. We applied this method to casing damage forecast of oil field. Using our new algorithm, attributes reduce to 12 from original 62. It becomes possible to forecast using these 12 attributes as the inputs.
基于改进BPSO的属性约简方法
提出了一种基于模拟退火和弱种群突变的二元粒子游优化方法。将该方法应用于油田套管损伤预测。使用我们的新算法,属性从原来的62个减少到12个。使用这12个属性作为输入进行预测成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信