Estimating the Parameters of the Truncated Regression Model Using the Two Algorithms PSO and Quasi-Newton

G. Basheer
{"title":"Estimating the Parameters of the Truncated Regression Model Using the Two Algorithms PSO and Quasi-Newton","authors":"G. Basheer","doi":"10.33899/iqjoss.2018.159253","DOIUrl":null,"url":null,"abstract":"In this research estimation of the parameters of the truncated regression model first solution, which is known as particle swarm optimization algorithm, and the second is one of the conventional optimization algorithms; which is known as Quasi-Newton algorithm namely BFGS algorithm to reach the optimum values for these parameters. This research also proposes a hybrid algorithm, linking BFGS algorithm with PSO algorithm. To find the optimal values for these parameters, we are programming these algorithms using the ready matlab7.11(R2010b). Results show that the number of iterations resulting from the use of the hybrid algorithm (BFGS-PSO) is less than the number of iterations of the algorithm (BFGS) and that the results were obtained using the program Stata11 by the same amount of allowable errors.","PeriodicalId":351789,"journal":{"name":"IRAQI JOURNAL OF STATISTICAL SCIENCES","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRAQI JOURNAL OF STATISTICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33899/iqjoss.2018.159253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this research estimation of the parameters of the truncated regression model first solution, which is known as particle swarm optimization algorithm, and the second is one of the conventional optimization algorithms; which is known as Quasi-Newton algorithm namely BFGS algorithm to reach the optimum values for these parameters. This research also proposes a hybrid algorithm, linking BFGS algorithm with PSO algorithm. To find the optimal values for these parameters, we are programming these algorithms using the ready matlab7.11(R2010b). Results show that the number of iterations resulting from the use of the hybrid algorithm (BFGS-PSO) is less than the number of iterations of the algorithm (BFGS) and that the results were obtained using the program Stata11 by the same amount of allowable errors.
用PSO和拟牛顿两种算法估计截断回归模型的参数
本研究首先求解截断回归模型的参数估计,这被称为粒子群优化算法,其次是常规优化算法之一;即拟牛顿算法,即BFGS算法,以求得这些参数的最优值。本研究还提出了一种混合算法,将BFGS算法与粒子群算法相结合。为了找到这些参数的最优值,我们使用现成的matlab7.11(R2010b)对这些算法进行编程。结果表明,使用混合算法(BFGS- pso)得到的迭代次数少于使用BFGS算法(BFGS)得到的迭代次数,并且使用Stata11程序得到的结果具有相同的允许误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信