Achievements Recommendation Framework Based on Scientific Collaboration Network

Xiaohui Li, Jie Peng, Shanqing Li
{"title":"Achievements Recommendation Framework Based on Scientific Collaboration Network","authors":"Xiaohui Li, Jie Peng, Shanqing Li","doi":"10.1109/ICMLA.2015.182","DOIUrl":null,"url":null,"abstract":"With the rapid growth of the Internet, vast amounts of data available and in other digital repositories make it challenging for users to find the right sources of information. This study presents a hierarchical recommendation framework that enriches the domain ontologies and retrieves more relevant information resources. In this paper, we analyze the features of achievements information related to the scientific and technological domains, and then build an ontology that represents their latent collaborative relations and detect clusters from the collaboration network. We conduct a case study to collect a data set of research achievements in electric vehicle field and better clustering results are obtained. This work also lays out a novel insight into the exploitation of scientific collaboration network to better classify achievements information.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the rapid growth of the Internet, vast amounts of data available and in other digital repositories make it challenging for users to find the right sources of information. This study presents a hierarchical recommendation framework that enriches the domain ontologies and retrieves more relevant information resources. In this paper, we analyze the features of achievements information related to the scientific and technological domains, and then build an ontology that represents their latent collaborative relations and detect clusters from the collaboration network. We conduct a case study to collect a data set of research achievements in electric vehicle field and better clustering results are obtained. This work also lays out a novel insight into the exploitation of scientific collaboration network to better classify achievements information.
基于科学协作网络的成果推荐框架
随着互联网的快速发展,大量的可用数据和其他数字存储库使得用户很难找到正确的信息源。本研究提出了一个层次推荐框架,丰富了领域本体,检索了更多相关的信息资源。本文分析了科技领域相关成果信息的特征,建立了代表科技领域潜在协作关系的本体,并从协作网络中检测出聚类。我们通过案例研究收集了一组电动车领域的研究成果数据集,得到了较好的聚类结果。这项工作还为利用科学合作网络更好地分类成就信息提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信