Upasana Tiwari, Swapnil Bhosale, Rupayan Chakraborty, S. Kopparapu
{"title":"Deep Lung Auscultation Using Acoustic Biomarkers for Abnormal Respiratory Sound Event Detection","authors":"Upasana Tiwari, Swapnil Bhosale, Rupayan Chakraborty, S. Kopparapu","doi":"10.1109/ICASSP39728.2021.9414845","DOIUrl":null,"url":null,"abstract":"Lung Auscultation is a non-invasive process of distinguishing normal respiratory sounds from abnormal ones by analyzing the airflow along the respiratory tract. With developments in the Deep Learning (DL) techniques and wider access to anonymized medical data, automatic detection of specific sounds such as crackles and wheezes have been gaining popularity. In this paper, we propose to use two sets of diversified acoustic biomarkers extracted using Discrete Wavelet Transform (DWT) and deep encoded features from the intermediate layer of a pre-trained Audio Event Detection (AED) model trained using sounds from daily activities. First set of biomarkers highlight the time frequency localization characteristics obtained from DWT coefficients. However, the second set of deep encoded biomarkers captures a generalized reliable representation, and thus indemnifies the scarcity of training samples and the class imbalance in dataset. The model trained using these features achieves a 15.05% increase in terms of the specificity over the baseline model that uses spectrogram features. Moreover, ensemble of DWT features and deep encoded feature based models show absolute improvements of 8.32%, 6.66% and 7.40% in terms of sensitivity, specificity and ICBHI-score, respectively, and clearly outperforms the state-of-the-art with a significant margin.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Lung Auscultation is a non-invasive process of distinguishing normal respiratory sounds from abnormal ones by analyzing the airflow along the respiratory tract. With developments in the Deep Learning (DL) techniques and wider access to anonymized medical data, automatic detection of specific sounds such as crackles and wheezes have been gaining popularity. In this paper, we propose to use two sets of diversified acoustic biomarkers extracted using Discrete Wavelet Transform (DWT) and deep encoded features from the intermediate layer of a pre-trained Audio Event Detection (AED) model trained using sounds from daily activities. First set of biomarkers highlight the time frequency localization characteristics obtained from DWT coefficients. However, the second set of deep encoded biomarkers captures a generalized reliable representation, and thus indemnifies the scarcity of training samples and the class imbalance in dataset. The model trained using these features achieves a 15.05% increase in terms of the specificity over the baseline model that uses spectrogram features. Moreover, ensemble of DWT features and deep encoded feature based models show absolute improvements of 8.32%, 6.66% and 7.40% in terms of sensitivity, specificity and ICBHI-score, respectively, and clearly outperforms the state-of-the-art with a significant margin.