Machine Learning Approach for Quality of Experience Aware Networks

Vlado Menkovski, Georgios Exarchakos, A. Liotta
{"title":"Machine Learning Approach for Quality of Experience Aware Networks","authors":"Vlado Menkovski, Georgios Exarchakos, A. Liotta","doi":"10.1109/INCOS.2010.86","DOIUrl":null,"url":null,"abstract":"Efficient management of multimedia services necessitates the understanding of how the quality of these services is perceived by the users. Estimation of the perceived quality or Quality of Experience (QoE) of the service is a challenging process due to the subjective nature of QoE. This process usually incorporates complex subjective studies that need to recreate the viewing conditions of the service in a controlled environment. In this paper we present Machine Learning techniques for modeling the dependencies of different network and application layer quality of service parameters to the QoE of network services using subjective quality feedback. These accurate QoE prediction models allow us to further develop a geometrical method for calculating the possible remedies per network stream for reaching the desired level of QoE. Finally we present a set of possible network techniques that can deliver the desired improvement to the multimedia streams.","PeriodicalId":289890,"journal":{"name":"2010 International Conference on Intelligent Networking and Collaborative Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCOS.2010.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

Efficient management of multimedia services necessitates the understanding of how the quality of these services is perceived by the users. Estimation of the perceived quality or Quality of Experience (QoE) of the service is a challenging process due to the subjective nature of QoE. This process usually incorporates complex subjective studies that need to recreate the viewing conditions of the service in a controlled environment. In this paper we present Machine Learning techniques for modeling the dependencies of different network and application layer quality of service parameters to the QoE of network services using subjective quality feedback. These accurate QoE prediction models allow us to further develop a geometrical method for calculating the possible remedies per network stream for reaching the desired level of QoE. Finally we present a set of possible network techniques that can deliver the desired improvement to the multimedia streams.
经验感知网络质量的机器学习方法
多媒体服务的有效管理需要了解用户如何感知这些服务的质量。由于服务的感知质量或体验质量(QoE)的主观性,对服务的感知质量或体验质量(QoE)的估计是一个具有挑战性的过程。这个过程通常包含复杂的主观研究,需要在受控环境中重新创建服务的观看条件。在本文中,我们提出了机器学习技术,用于使用主观质量反馈来建模不同网络和应用层服务质量参数对网络服务质量质量的依赖关系。这些精确的QoE预测模型使我们能够进一步开发一种几何方法,用于计算每个网络流达到所需QoE水平的可能补救措施。最后,我们提出了一套可能的网络技术,可以提供期望的改进多媒体流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信