Performance comparison of the Teknomo-Fernandez algorithm on the RGB and HSV colour spaces

P. Abu, P. Fernandez
{"title":"Performance comparison of the Teknomo-Fernandez algorithm on the RGB and HSV colour spaces","authors":"P. Abu, P. Fernandez","doi":"10.1109/HNICEM.2014.7016262","DOIUrl":null,"url":null,"abstract":"Segmentation of the foreground objects is the primary step in many video analysis applications. The accuracy of the segmentation is dependent on an accurate background image that is used for background subtraction. The Teknomo-Fernandez (TF) algorithm is an efficient algorithm that quickly generates a good background image. A previous study showed the extendibility of the TF algorithm to higher number of frames per tournament, with the original 3 frames TF3L to be the most efficient and best configuration for actual implementation. In this study, we examine the performance of the TF algorithm on both RGB and HSV colour spaces using the TF3, 4 configuration and the Wallflower dataset. A simple background subtraction with threshold is implemented. The performances are measured numerically using the number of false negative and false positive pixel count against the provided ideal foreground image. The results show that the TF algorithm implemented using both RGB and HSV generates accurate background images in a wide range of video settings. The HSV implementation exhibits higher accuracies than the RGB implementation for majority of the test videos with the cost of an increase in processing time.","PeriodicalId":309548,"journal":{"name":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2014.7016262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Segmentation of the foreground objects is the primary step in many video analysis applications. The accuracy of the segmentation is dependent on an accurate background image that is used for background subtraction. The Teknomo-Fernandez (TF) algorithm is an efficient algorithm that quickly generates a good background image. A previous study showed the extendibility of the TF algorithm to higher number of frames per tournament, with the original 3 frames TF3L to be the most efficient and best configuration for actual implementation. In this study, we examine the performance of the TF algorithm on both RGB and HSV colour spaces using the TF3, 4 configuration and the Wallflower dataset. A simple background subtraction with threshold is implemented. The performances are measured numerically using the number of false negative and false positive pixel count against the provided ideal foreground image. The results show that the TF algorithm implemented using both RGB and HSV generates accurate background images in a wide range of video settings. The HSV implementation exhibits higher accuracies than the RGB implementation for majority of the test videos with the cost of an increase in processing time.
Teknomo-Fernandez算法在RGB和HSV色彩空间上的性能比较
前景对象的分割是许多视频分析应用的首要步骤。分割的准确性依赖于用于背景减法的准确背景图像。Teknomo-Fernandez (TF)算法是一种快速生成良好背景图像的高效算法。先前的一项研究表明,TF算法可扩展到每场比赛的更高帧数,原始的3帧TF3L是实际实现中最有效和最佳的配置。在本研究中,我们使用tf3,4配置和Wallflower数据集检查了TF算法在RGB和HSV色彩空间上的性能。实现了一种简单的带有阈值的背景减法。使用针对所提供的理想前景图像的假阴性和假阳性像素数对性能进行数值测量。结果表明,使用RGB和HSV实现的TF算法可以在广泛的视频设置下生成准确的背景图像。HSV实现在大多数测试视频中表现出比RGB实现更高的精度,但代价是处理时间的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信