Hauberk: Lightweight Silent Data Corruption Error Detector for GPGPU

Keun Soo YIM, C. Pham, Mushfiq Saleheen, Z. Kalbarczyk, R. Iyer
{"title":"Hauberk: Lightweight Silent Data Corruption Error Detector for GPGPU","authors":"Keun Soo YIM, C. Pham, Mushfiq Saleheen, Z. Kalbarczyk, R. Iyer","doi":"10.1109/IPDPS.2011.36","DOIUrl":null,"url":null,"abstract":"High performance and relatively low cost of GPU-based platforms provide an attractive alternative for general purpose high performance computing (HPC). However, the emerging HPC applications have usually stricter output cor-rectness requirements than typical GPU applications (i.e., 3D graphics). This paper first analyzes the error resiliency of GPGPU platforms using a fault injection tool we have devel-oped for commodity GPU devices. On average, 16-33% of in-jected faults cause silent data corruption (SDC) errors in the HPC programs executing on GPU. This SDC ratio is signifi-cantly higher than that measured in CPU programs (","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

Abstract

High performance and relatively low cost of GPU-based platforms provide an attractive alternative for general purpose high performance computing (HPC). However, the emerging HPC applications have usually stricter output cor-rectness requirements than typical GPU applications (i.e., 3D graphics). This paper first analyzes the error resiliency of GPGPU platforms using a fault injection tool we have devel-oped for commodity GPU devices. On average, 16-33% of in-jected faults cause silent data corruption (SDC) errors in the HPC programs executing on GPU. This SDC ratio is signifi-cantly higher than that measured in CPU programs (
用于GPGPU的轻量级静默数据损坏错误检测器
基于gpu的平台的高性能和相对低成本为通用高性能计算(HPC)提供了一个有吸引力的替代方案。然而,新兴的HPC应用程序通常比典型的GPU应用程序(即3D图形)有更严格的输出正确性要求。本文首先利用我们为商用GPU设备开发的故障注入工具分析了GPGPU平台的错误弹性。在GPU上执行的高性能计算程序中,平均有16-33%的注入故障导致静默数据损坏(SDC)错误。此SDC比率明显高于在CPU程序中测量的比率(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信