A Transformer Architecture for Stress Detection from ECG

Behnam Behinaein, Anubha Bhatti, D. Rodenburg, P. Hungler, A. Etemad
{"title":"A Transformer Architecture for Stress Detection from ECG","authors":"Behnam Behinaein, Anubha Bhatti, D. Rodenburg, P. Hungler, A. Etemad","doi":"10.1145/3460421.3480427","DOIUrl":null,"url":null,"abstract":"Electrocardiogram (ECG) has been widely used for emotion recognition. This paper presents a deep neural network based on convolutional layers and a transformer mechanism to detect stress using ECG signals. We perform leave-one-subject-out experiments on two publicly available datasets, WESAD and SWELL-KW, to evaluate our method. Our experiments show that the proposed model achieves strong results, comparable or better than the state-of-the-art models for ECG-based stress detection on these two datasets. Moreover, our method is end-to-end, does not require handcrafted features, and can learn robust representations with only a few convolutional blocks and the transformer component.","PeriodicalId":395295,"journal":{"name":"Proceedings of the 2021 ACM International Symposium on Wearable Computers","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460421.3480427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Electrocardiogram (ECG) has been widely used for emotion recognition. This paper presents a deep neural network based on convolutional layers and a transformer mechanism to detect stress using ECG signals. We perform leave-one-subject-out experiments on two publicly available datasets, WESAD and SWELL-KW, to evaluate our method. Our experiments show that the proposed model achieves strong results, comparable or better than the state-of-the-art models for ECG-based stress detection on these two datasets. Moreover, our method is end-to-end, does not require handcrafted features, and can learn robust representations with only a few convolutional blocks and the transformer component.
一种用于心电应力检测的变压器结构
心电图(Electrocardiogram, ECG)在情感识别中有着广泛的应用。本文提出了一种基于卷积层的深度神经网络和一种变压器机制来检测心电信号中的应力。我们在两个公开可用的数据集WESAD和SWELL-KW上进行了丢下一个受试者的实验来评估我们的方法。我们的实验表明,所提出的模型在这两个数据集上取得了强有力的结果,与基于ecg的应力检测的最先进模型相当或更好。此外,我们的方法是端到端的,不需要手工制作的特征,并且只需要几个卷积块和变压器组件就可以学习健壮的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信