P. Binh, Nguyen Hong Ha, Tong Cong Tuan, Le Dinh Khoa
{"title":"Determination of representative load curve based on Fuzzy K-Means","authors":"P. Binh, Nguyen Hong Ha, Tong Cong Tuan, Le Dinh Khoa","doi":"10.1109/PEOCO.2010.5559257","DOIUrl":null,"url":null,"abstract":"With the large amount of information (large number of daily load curves) for one consumer or one group of consumers, the classification and building the representative load curve (RLC) are necessary. The RLC can be built in the set of similar load curves by clustering analysis. This paper presents a Fuzzy clustering technique to determine RLC on the basis of their electricity behavior. Fuzzy K-Means (FKM) is utilized in this work. The load data used in this work are from actual measurements from different feeders derived from a distribution network. Global criterion method and Bellman-Zadeh's maximization principle will be used to compromise the Cluster validity indexes and determine the optimal cluster number. Determining the suitable weighting exponent m is also introduced in this paper.","PeriodicalId":379868,"journal":{"name":"2010 4th International Power Engineering and Optimization Conference (PEOCO)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Power Engineering and Optimization Conference (PEOCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEOCO.2010.5559257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
With the large amount of information (large number of daily load curves) for one consumer or one group of consumers, the classification and building the representative load curve (RLC) are necessary. The RLC can be built in the set of similar load curves by clustering analysis. This paper presents a Fuzzy clustering technique to determine RLC on the basis of their electricity behavior. Fuzzy K-Means (FKM) is utilized in this work. The load data used in this work are from actual measurements from different feeders derived from a distribution network. Global criterion method and Bellman-Zadeh's maximization principle will be used to compromise the Cluster validity indexes and determine the optimal cluster number. Determining the suitable weighting exponent m is also introduced in this paper.