Application of data mining methods in diabetes prediction

Messan Komi, Jun Li, Yongxin Zhai, Xianguo Zhang
{"title":"Application of data mining methods in diabetes prediction","authors":"Messan Komi, Jun Li, Yongxin Zhai, Xianguo Zhang","doi":"10.1109/ICIVC.2017.7984706","DOIUrl":null,"url":null,"abstract":"Data science methods have the potential to benefit other scientific fields by shedding new light on common questions. One such task is help to make predictions on medical data. Diabetes mellitus or simply diabetes is a disease caused due to the increase level of blood glucose. Various traditional methods, based on physical and chemical tests, are available for diagnosing diabetes. The methods strongly based on the data mining techniques can be effectively applied for high blood pressure risk prediction. In this paper, we explore the early prediction of diabetes via five different data mining methods including: GMM, SVM, Logistic regression, ELM, ANN. The experiment result proves that ANN (Artificial Neural Network) provides the highest accuracy than other techniques.","PeriodicalId":181522,"journal":{"name":"2017 2nd International Conference on Image, Vision and Computing (ICIVC)","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC.2017.7984706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

Data science methods have the potential to benefit other scientific fields by shedding new light on common questions. One such task is help to make predictions on medical data. Diabetes mellitus or simply diabetes is a disease caused due to the increase level of blood glucose. Various traditional methods, based on physical and chemical tests, are available for diagnosing diabetes. The methods strongly based on the data mining techniques can be effectively applied for high blood pressure risk prediction. In this paper, we explore the early prediction of diabetes via five different data mining methods including: GMM, SVM, Logistic regression, ELM, ANN. The experiment result proves that ANN (Artificial Neural Network) provides the highest accuracy than other techniques.
数据挖掘方法在糖尿病预测中的应用
数据科学方法通过揭示常见问题的新视角,有可能使其他科学领域受益。其中一项任务是帮助对医疗数据进行预测。糖尿病是一种由于血糖水平升高而引起的疾病。基于物理和化学测试的各种传统方法可用于诊断糖尿病。基于数据挖掘技术的方法可以有效地应用于高血压风险预测。本文通过GMM、SVM、Logistic回归、ELM、ANN五种不同的数据挖掘方法对糖尿病的早期预测进行了探讨。实验结果表明,人工神经网络(Artificial Neural Network, ANN)的准确率高于其他技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信