{"title":"Microemulsions as Nanotemplates: A Soft and Versatile Approach","authors":"R. Kanwar, J. Rathee, M. T. Patil, S. Mehta","doi":"10.5772/INTECHOPEN.80758","DOIUrl":null,"url":null,"abstract":"Template efficacy of microemulsions in generating nanoparticles has gar-nered considerable attention in the world of colloidal science. A microemulsion is an optically isotropic and thermodynamically stable colloidal dispersion, which possess spherical droplets (either of W/O or O/W) of the size <50 nm. In microemulsions, the spontaneous formation of domains of nanometric dimensions significantly facilitates their exploitation as potential nanoreactors for the production of stable nanoparticles (due to their cost-effectiveness and ease of preparation). The present chapter provides an overview of microemulsions as efficient nanotemplates, with a detailed account of plausible nanomaterials, i.e., metallic nanoparticles, quantum dots, polymeric nanoparticles, mesoporous silica nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, etc. Based on the high surface area, good crystallinity, controllable particle size, outstanding catalytic, and magnetic properties, the exploitation of nanoparticles as efficient catalysts and drug delivery modules has also been highlighted.","PeriodicalId":201512,"journal":{"name":"Microemulsion - a Chemical Nanoreactor [Working Title]","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microemulsion - a Chemical Nanoreactor [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Template efficacy of microemulsions in generating nanoparticles has gar-nered considerable attention in the world of colloidal science. A microemulsion is an optically isotropic and thermodynamically stable colloidal dispersion, which possess spherical droplets (either of W/O or O/W) of the size <50 nm. In microemulsions, the spontaneous formation of domains of nanometric dimensions significantly facilitates their exploitation as potential nanoreactors for the production of stable nanoparticles (due to their cost-effectiveness and ease of preparation). The present chapter provides an overview of microemulsions as efficient nanotemplates, with a detailed account of plausible nanomaterials, i.e., metallic nanoparticles, quantum dots, polymeric nanoparticles, mesoporous silica nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, etc. Based on the high surface area, good crystallinity, controllable particle size, outstanding catalytic, and magnetic properties, the exploitation of nanoparticles as efficient catalysts and drug delivery modules has also been highlighted.