Robust Bioinformatics Recognition with VLSI Biochip Microsystem

Jaw-Chyng L. Lue, W. Fang
{"title":"Robust Bioinformatics Recognition with VLSI Biochip Microsystem","authors":"Jaw-Chyng L. Lue, W. Fang","doi":"10.1109/LSSA.2006.250384","DOIUrl":null,"url":null,"abstract":"A microsystem architecture for real-time, on-site, robust bioinformatic patterns recognition and analysis has been proposed. This system is compatible with on-chip DNA analysis means such as polymerase chain reaction (PCR) amplification. A corresponding novel artificial neural network (ANN) learning algorithm using new sigmoid-logarithmic transfer function based on error backpropagation (EBP) algorithm is invented. Our results show the trained new ANN can recognize low fluorescence patterns better than the conventional sigmoidal ANN does. A differential logarithmic imaging chip is designed for calculating logarithm of relative intensities of fluorescence signals. The single-rail logarithmic circuit and a prototype ANN chip are designed, fabricated and characterized","PeriodicalId":360097,"journal":{"name":"2006 IEEE/NLM Life Science Systems and Applications Workshop","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/NLM Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSSA.2006.250384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A microsystem architecture for real-time, on-site, robust bioinformatic patterns recognition and analysis has been proposed. This system is compatible with on-chip DNA analysis means such as polymerase chain reaction (PCR) amplification. A corresponding novel artificial neural network (ANN) learning algorithm using new sigmoid-logarithmic transfer function based on error backpropagation (EBP) algorithm is invented. Our results show the trained new ANN can recognize low fluorescence patterns better than the conventional sigmoidal ANN does. A differential logarithmic imaging chip is designed for calculating logarithm of relative intensities of fluorescence signals. The single-rail logarithmic circuit and a prototype ANN chip are designed, fabricated and characterized
基于VLSI生物芯片的鲁棒生物信息学识别
提出了一种实时、现场、鲁棒的生物信息学模式识别和分析的微系统架构。该系统兼容芯片上的DNA分析手段,如聚合酶链反应(PCR)扩增。提出了一种基于误差反向传播(EBP)算法的新型s型对数传递函数的人工神经网络学习算法。结果表明,与传统的s型神经网络相比,训练后的新神经网络能更好地识别低荧光模式。为计算荧光信号相对强度的对数,设计了一种差分对数成像芯片。设计、制作了单轨对数电路和原型人工神经网络芯片,并对其进行了表征
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信