Adaptive Optimal Receding-Horizon Robot Navigation via Short-Term Policy Development

A. Jamshidnejad, Emilio Frazzoli
{"title":"Adaptive Optimal Receding-Horizon Robot Navigation via Short-Term Policy Development","authors":"A. Jamshidnejad, Emilio Frazzoli","doi":"10.1109/ICARCV.2018.8581157","DOIUrl":null,"url":null,"abstract":"We propose a novel optimal receding-horizon navigation approach for a robot in an unknown search environment, towards a known goal position. The search environment includes several obstacles that are distributed at unknown positions. The proposed approach considers multiple objectives, including reference path tracking, reduction of the energy consumption, restraining the robot's mission time, and asymptotic stability towards the goal position. The navigation policy is determined in the detection zone of the robot's detection sensor at particular update time steps for short time. This policy will be updated at the next update time steps. Moreover, we introduce a novel heuristic algorithm for determining the robot's tracking path trajectory that is simply implementable and fast in computations.","PeriodicalId":395380,"journal":{"name":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2018.8581157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a novel optimal receding-horizon navigation approach for a robot in an unknown search environment, towards a known goal position. The search environment includes several obstacles that are distributed at unknown positions. The proposed approach considers multiple objectives, including reference path tracking, reduction of the energy consumption, restraining the robot's mission time, and asymptotic stability towards the goal position. The navigation policy is determined in the detection zone of the robot's detection sensor at particular update time steps for short time. This policy will be updated at the next update time steps. Moreover, we introduce a novel heuristic algorithm for determining the robot's tracking path trajectory that is simply implementable and fast in computations.
基于短期政策发展的自适应最优退视机器人导航
我们提出了一种新的最优后退地平线导航方法,用于机器人在未知的搜索环境中,朝向已知的目标位置。搜索环境包括分布在未知位置的若干障碍物。该方法考虑了多个目标,包括参考路径跟踪、降低能量消耗、限制机器人的任务时间以及向目标位置渐近稳定。在机器人检测传感器的检测区域内,以特定的更新时间步长在短时间内确定导航策略。此策略将在下一个更新时间步骤中更新。此外,我们还引入了一种新的启发式算法来确定机器人的跟踪路径轨迹,该算法实现简单,计算速度快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信