Yun-ok Lee, Mijin Noh, Yangsok Kim, Mumoungcho Han
{"title":"Analysis of service strategies through changes in Messenger application reviews during the pandemic: focusing on topic modeling","authors":"Yun-ok Lee, Mijin Noh, Yangsok Kim, Mumoungcho Han","doi":"10.30693/smj.2023.12.6.15","DOIUrl":null,"url":null,"abstract":"As face-to-face communication has become difficult due to the COVID-19 pandemic, studies have been conducted to understand the impact of non-face-to-face communication, but there is a lack of research that examines this through messenger application reviews. This study aims to identify the impact of the pandemic through Latent Dirichlet Allocation (LDA) topic modeling by collecting review data of 메신저 applications in the Google Play Store and suggest service strategies accordingly. The study categorized the data based on when the pandemic started and the ratings given by users. The analysis showed that messenger is mainly used by middle-aged and older people, and that family communication increased after the pandemic. Users expressed frustration with the application's updates and found it difficult to adapt to the changes. This calls for a development approach that adjusts the frequency of updates and actively listens to user feedback. Also, providing an intuitive and simple user interface (UI) is expected to improve user satisfaction.","PeriodicalId":249252,"journal":{"name":"Korean Institute of Smart Media","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Institute of Smart Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30693/smj.2023.12.6.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As face-to-face communication has become difficult due to the COVID-19 pandemic, studies have been conducted to understand the impact of non-face-to-face communication, but there is a lack of research that examines this through messenger application reviews. This study aims to identify the impact of the pandemic through Latent Dirichlet Allocation (LDA) topic modeling by collecting review data of 메신저 applications in the Google Play Store and suggest service strategies accordingly. The study categorized the data based on when the pandemic started and the ratings given by users. The analysis showed that messenger is mainly used by middle-aged and older people, and that family communication increased after the pandemic. Users expressed frustration with the application's updates and found it difficult to adapt to the changes. This calls for a development approach that adjusts the frequency of updates and actively listens to user feedback. Also, providing an intuitive and simple user interface (UI) is expected to improve user satisfaction.