Constraint energy minimizing generalized multiscale finite element method for inhomogeneous boundary value problems with high contrast coefficients

Changqing Ye, Eric T. Chung
{"title":"Constraint energy minimizing generalized multiscale finite element method for inhomogeneous boundary value problems with high contrast coefficients","authors":"Changqing Ye, Eric T. Chung","doi":"10.1137/21m1459113","DOIUrl":null,"url":null,"abstract":"In this article we develop the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) for elliptic partial differential equations with inhomogeneous Dirichlet, Neumann, and Robin boundary conditions, and the high contrast property emerges from the coefficients of elliptic operators and Robin boundary conditions. By careful construction of multiscale bases of the CEM-GMsFEM, we introduce two operators $\\mathcal{D}^m$ and $\\mathcal{N}^m$ which are used to handle inhomogeneous Dirichlet and Neumann boundary values and are also proved to converge independently of contrast ratios as enlarging oversampling regions. We provide a priori error estimate and show that oversampling layers are the key factor in controlling numerical errors. A series of experiments are conducted, and those results reflect the reliability of our methods even with high contrast ratios.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1459113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this article we develop the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) for elliptic partial differential equations with inhomogeneous Dirichlet, Neumann, and Robin boundary conditions, and the high contrast property emerges from the coefficients of elliptic operators and Robin boundary conditions. By careful construction of multiscale bases of the CEM-GMsFEM, we introduce two operators $\mathcal{D}^m$ and $\mathcal{N}^m$ which are used to handle inhomogeneous Dirichlet and Neumann boundary values and are also proved to converge independently of contrast ratios as enlarging oversampling regions. We provide a priori error estimate and show that oversampling layers are the key factor in controlling numerical errors. A series of experiments are conducted, and those results reflect the reliability of our methods even with high contrast ratios.
高对比系数非齐次边值问题的约束能量最小化广义多尺度有限元法
本文建立了具有非齐次Dirichlet、Neumann和Robin边界条件的椭圆型偏微分方程的约束能量最小化广义多尺度有限元方法(CEM-GMsFEM),并从椭圆算子和Robin边界条件的系数中得到了高对比度。通过仔细构造em - gmsfem的多尺度基,我们引入了两个算子$\mathcal{D}^m$和$\mathcal{N}^m$,它们用于处理非齐次Dirichlet和Neumann边值,并证明了它们作为扩大的过采样区域独立于对比度收敛。我们提供了一个先验误差估计,并表明过采样层是控制数值误差的关键因素。进行了一系列的实验,结果表明,即使在高对比度下,我们的方法也是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信