The Kahr-Moore-Wang Class Contains Untestable Properties

Charles Jordan, T. Zeugmann
{"title":"The Kahr-Moore-Wang Class Contains Untestable Properties","authors":"Charles Jordan, T. Zeugmann","doi":"10.22364/BJMC.2016.4.4.11","DOIUrl":null,"url":null,"abstract":". Property testing is a kind of randomized approximation in which one takes a small, random sample of a structure and wishes to determine whether the structure satisfies some property or is far from satisfying the property. We focus on the testability of classes of first-order expressible properties, and in particular, on the clas-sification of prefix-vocabulary classes for testability. The main result is the untestability of [ ∀∃∀ , (0 , 1)] = . We also show that this class remains untestable without equality in at least one model of testing. These classes are well-known and (at least one is) minimal for untestability. We discuss what is currently known about the classification for testability and briefly compare it to other classifications.","PeriodicalId":431209,"journal":{"name":"Balt. J. Mod. Comput.","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Balt. J. Mod. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22364/BJMC.2016.4.4.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Property testing is a kind of randomized approximation in which one takes a small, random sample of a structure and wishes to determine whether the structure satisfies some property or is far from satisfying the property. We focus on the testability of classes of first-order expressible properties, and in particular, on the clas-sification of prefix-vocabulary classes for testability. The main result is the untestability of [ ∀∃∀ , (0 , 1)] = . We also show that this class remains untestable without equality in at least one model of testing. These classes are well-known and (at least one is) minimal for untestability. We discuss what is currently known about the classification for testability and briefly compare it to other classifications.
Kahr-Moore-Wang类包含不可测试的属性
。性能测试是一种随机逼近,即取一个小的、随机的结构样本,希望确定该结构是否满足某些特性或远不满足该特性。我们主要研究一阶可表达性质类的可测试性,特别是前缀词汇类的可测试性分类。主要结果是[∀∃,(0,1)]=的不可测性。我们还表明,如果在至少一个测试模型中没有相等,这个类仍然是不可测试的。这些类是众所周知的,并且(至少有一个是)不可测试性最小。我们讨论了目前已知的可测试性分类,并简要地将其与其他分类进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信