On proving lower bounds for circuit size

M. Karchmer
{"title":"On proving lower bounds for circuit size","authors":"M. Karchmer","doi":"10.1109/SCT.1993.336535","DOIUrl":null,"url":null,"abstract":"A.A. Razborov's (1989) generalized approximation method, which has the potential of giving tight lower bounds for circuit size, is considered. The method is described in a more intuitive fashion, and its analogy with the ultraproduct construction in model theory is made explicit. The method is extended so that it can be used to lower bound nondeterministic circuit size. Using the proposed framework, a new proof for the exponential monotone size lower bound for the clique function is presented.<<ETX>>","PeriodicalId":331616,"journal":{"name":"[1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1993.336535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

A.A. Razborov's (1989) generalized approximation method, which has the potential of giving tight lower bounds for circuit size, is considered. The method is described in a more intuitive fashion, and its analogy with the ultraproduct construction in model theory is made explicit. The method is extended so that it can be used to lower bound nondeterministic circuit size. Using the proposed framework, a new proof for the exponential monotone size lower bound for the clique function is presented.<>
关于证明电路尺寸的下界
考虑了A.A. Razborov(1989)的广义近似方法,该方法有可能给出电路尺寸的严格下界。以一种更直观的方式描述了该方法,并明确了它与模型理论中的超积构造的类比。对该方法进行了扩展,使其可用于求解不确定性电路尺寸的下界问题。利用所提出的框架,给出了团函数的指数单调大小下界的一个新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信