Reconfigurable tiles of computing-in-memory SRAM architecture for scalable vectorization

R. Gauchi, V. Egloff, Maha Kooli, J. Noël, B. Giraud, P. Vivet, S. Mitra, H. Charles
{"title":"Reconfigurable tiles of computing-in-memory SRAM architecture for scalable vectorization","authors":"R. Gauchi, V. Egloff, Maha Kooli, J. Noël, B. Giraud, P. Vivet, S. Mitra, H. Charles","doi":"10.1145/3370748.3406550","DOIUrl":null,"url":null,"abstract":"For big data applications, bringing computation to the memory is expected to reduce drastically data transfers, which can be done using recent concepts of Computing-In-Memory (CIM). To address kernels with larger memory data sets, we propose a reconfigurable tile-based architecture composed of Computational-SRAM (C-SRAM) tiles, each enabling arithmetic and logic operations within the memory. The proposed horizontal scalability and vertical data communication are combined to select the optimal vector width for maximum performance. These schemes allow to use vector-based kernels available on existing SIMD engines onto the targeted CIM architecture. For architecture exploration, we propose an instruction-accurate simulation platform using SystemC/TLM to quantify performance and energy of various kernels. For detailed performance evaluation, the platform is calibrated with data extracted from the Place&Route C-SRAM circuit, designed in 22nm FDSOI technology. Compared to 512-bit SIMD architecture, the proposed CIM architecture achieves an EDP reduction up to 60× and 34× for memory bound kernels and for compute bound kernels, respectively.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

For big data applications, bringing computation to the memory is expected to reduce drastically data transfers, which can be done using recent concepts of Computing-In-Memory (CIM). To address kernels with larger memory data sets, we propose a reconfigurable tile-based architecture composed of Computational-SRAM (C-SRAM) tiles, each enabling arithmetic and logic operations within the memory. The proposed horizontal scalability and vertical data communication are combined to select the optimal vector width for maximum performance. These schemes allow to use vector-based kernels available on existing SIMD engines onto the targeted CIM architecture. For architecture exploration, we propose an instruction-accurate simulation platform using SystemC/TLM to quantify performance and energy of various kernels. For detailed performance evaluation, the platform is calibrated with data extracted from the Place&Route C-SRAM circuit, designed in 22nm FDSOI technology. Compared to 512-bit SIMD architecture, the proposed CIM architecture achieves an EDP reduction up to 60× and 34× for memory bound kernels and for compute bound kernels, respectively.
可重构的内存计算SRAM体系结构,用于可扩展的矢量化
对于大数据应用程序,将计算带入内存有望大幅减少数据传输,这可以使用内存中计算(CIM)的最新概念来实现。为了解决具有更大内存数据集的内核,我们提出了一种可重构的基于块的架构,该架构由计算sram (C-SRAM)块组成,每个块在内存中支持算术和逻辑操作。将所提出的水平可扩展性和垂直数据通信相结合,选择最佳矢量宽度以获得最大性能。这些方案允许在目标CIM体系结构上使用现有SIMD引擎上可用的基于矢量的内核。在架构探索方面,我们提出了一个指令精确的仿真平台,使用SystemC/TLM来量化各种内核的性能和能量。为了进行详细的性能评估,该平台使用从Place&Route C-SRAM电路提取的数据进行校准,该电路采用22nm FDSOI技术设计。与512位SIMD体系结构相比,所提出的CIM体系结构对于内存绑定内核和计算绑定内核分别实现了高达60倍和34倍的EDP降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信