Proximity Graphs for Similarity Searches: Experimental Survey and the New Connected-Partition Approach HGraph

L. C. Shimomura, D. S. Kaster
{"title":"Proximity Graphs for Similarity Searches: Experimental Survey and the New Connected-Partition Approach HGraph","authors":"L. C. Shimomura, D. S. Kaster","doi":"10.5753/sbbd_estendido.2021.18181","DOIUrl":null,"url":null,"abstract":"Similarity searching is a widely used approach to retrieve complex data (images, videos, time series, etc.). Similarity searches aim at retrieving similar data according to the intrinsic characteristics of the data. Recently, graph-based methods have emerged as a very efficient alternative for similarity retrieval, with reports indicating they have outperformed methods of other categories in several situations. This work presents two main contributions to graph-based methods for similarity searches. The first contribution is a survey on the main graph types currently employed for similarity searches and an experimental evaluation of the most representative graphs in a common platform for exact and approximate search algorithms. The second contribution is a new graph-based method called HGraph, which is a connected-partition approach to build a proximity graph and answer similarity searches. Both of our contributions and results were published and received awards in international conferences.","PeriodicalId":232860,"journal":{"name":"Anais Estendidos do XXXVI Simpósio Brasileiro de Banco de Dados (SBBD Estendido 2021)","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXXVI Simpósio Brasileiro de Banco de Dados (SBBD Estendido 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbbd_estendido.2021.18181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Similarity searching is a widely used approach to retrieve complex data (images, videos, time series, etc.). Similarity searches aim at retrieving similar data according to the intrinsic characteristics of the data. Recently, graph-based methods have emerged as a very efficient alternative for similarity retrieval, with reports indicating they have outperformed methods of other categories in several situations. This work presents two main contributions to graph-based methods for similarity searches. The first contribution is a survey on the main graph types currently employed for similarity searches and an experimental evaluation of the most representative graphs in a common platform for exact and approximate search algorithms. The second contribution is a new graph-based method called HGraph, which is a connected-partition approach to build a proximity graph and answer similarity searches. Both of our contributions and results were published and received awards in international conferences.
相似搜索的接近图:实验综述和新的连通划分方法
相似度搜索是一种广泛用于检索复杂数据(图像、视频、时间序列等)的方法。相似搜索的目的是根据数据的内在特征检索相似的数据。最近,基于图的方法已经成为相似性检索的一种非常有效的替代方法,有报告表明它们在某些情况下优于其他类别的方法。这项工作提出了基于图的相似度搜索方法的两个主要贡献。第一个贡献是对目前用于相似性搜索的主要图类型进行调查,并对精确和近似搜索算法的通用平台中最具代表性的图进行实验评估。第二个贡献是一种新的基于图的方法,称为HGraph,它是一种连接分区方法,用于构建接近图并回答相似性搜索。我们的贡献和成果都在国际会议上发表并获得奖项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信