Dendritic lattice associative memories for pattern classification

G. Urcid, G. Ritter, J. Valdiviezo-N.
{"title":"Dendritic lattice associative memories for pattern classification","authors":"G. Urcid, G. Ritter, J. Valdiviezo-N.","doi":"10.1109/NaBIC.2012.6402259","DOIUrl":null,"url":null,"abstract":"We present a two layer dendritic hetero-associative memory that gives high percentages of correct classification for typical pattern recognition problems. The memory is a feedforward dendritic network based on lattice algebra operations and can be used with multivalued real inputs. A major consequence of this approach shows the inherent capability of prototype-class pattern associations to realize classification tasks in a direct and fast way without any convergence problems.","PeriodicalId":103091,"journal":{"name":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaBIC.2012.6402259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a two layer dendritic hetero-associative memory that gives high percentages of correct classification for typical pattern recognition problems. The memory is a feedforward dendritic network based on lattice algebra operations and can be used with multivalued real inputs. A major consequence of this approach shows the inherent capability of prototype-class pattern associations to realize classification tasks in a direct and fast way without any convergence problems.
树突点阵联想记忆模式分类
我们提出了一种两层树突异联想记忆,对典型的模式识别问题给出了很高的正确分类百分比。该存储器是一种基于格代数运算的前馈树突状网络,可用于多值实输入。这种方法的一个主要结果显示了原型类模式关联的内在能力,可以直接快速地实现分类任务,而不会出现任何收敛问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信