Multi-agent reinfocement learning for stochastic power management in cognitive radio network

Snehalika Lall, A. Sadhu, A. Konar, K. K. Mallik, Sanchita Ghosh
{"title":"Multi-agent reinfocement learning for stochastic power management in cognitive radio network","authors":"Snehalika Lall, A. Sadhu, A. Konar, K. K. Mallik, Sanchita Ghosh","doi":"10.1109/MICROCOM.2016.7522587","DOIUrl":null,"url":null,"abstract":"Frequency spectra are nowadays getting overcrowded because of increasing cell phone users. Cognitive radio network offers an alternative modality to utilize unused spectra efficiently among unlicensed users. This paper attempts to allocate transmission power among cognitive users in an efficient way without creating interference to the licensed users. We here adopt multi-agent reinforcement learning for cooperative power allocation in cognitive radio network. Multi-agent learning is here used to handle stochastic behavior of the environment. We use three mixed strategies (Correlated equilibrium) to control transmission power in multi-agent learning. After the learning algorithm converges, we obtain the optimum power level under different situations for subsequent use in power utilization during communication. Experimental results indicate that the proposed algorithm outperforms its classical counterparts by a significant margin.","PeriodicalId":118902,"journal":{"name":"2016 International Conference on Microelectronics, Computing and Communications (MicroCom)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Microelectronics, Computing and Communications (MicroCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICROCOM.2016.7522587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Frequency spectra are nowadays getting overcrowded because of increasing cell phone users. Cognitive radio network offers an alternative modality to utilize unused spectra efficiently among unlicensed users. This paper attempts to allocate transmission power among cognitive users in an efficient way without creating interference to the licensed users. We here adopt multi-agent reinforcement learning for cooperative power allocation in cognitive radio network. Multi-agent learning is here used to handle stochastic behavior of the environment. We use three mixed strategies (Correlated equilibrium) to control transmission power in multi-agent learning. After the learning algorithm converges, we obtain the optimum power level under different situations for subsequent use in power utilization during communication. Experimental results indicate that the proposed algorithm outperforms its classical counterparts by a significant margin.
认知无线电网络随机功率管理中的多智能体强化学习
由于手机用户的增加,频谱变得越来越拥挤。认知无线电网络提供了一种替代方式,可以有效地利用未经许可的用户之间未使用的频谱。本文试图在不干扰许可用户的前提下,有效地在认知用户之间分配传输功率。在认知无线网络中,我们采用多智能体强化学习进行协同功率分配。多智能体学习在这里被用来处理环境的随机行为。我们使用三种混合策略(相关均衡)来控制多智能体学习中的传输功率。在学习算法收敛后,我们得到了不同情况下的最优功率水平,以便后续在通信过程中的功率利用中使用。实验结果表明,该算法的性能明显优于经典算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信