Selectivity of Vapour Trace Detection System

Ajda Tuševski, A. Gradišek, D. Strle
{"title":"Selectivity of Vapour Trace Detection System","authors":"Ajda Tuševski, A. Gradišek, D. Strle","doi":"10.1109/ISOEN54820.2022.9789677","DOIUrl":null,"url":null,"abstract":"In this article we investigate the selectivity improvements of vapor trace detection system (VPDS) built of the array of differently functionalized comb capacitive sensors and extremely sensitive integrated electronic circuits. We present some simple theoretical background, a complete detection system, calibration procedure and some measured results. To improve the selectivity, we propose to use increased number of differently modified sensors together with machine learning algorithms for more efficient pattern recognition.","PeriodicalId":427373,"journal":{"name":"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOEN54820.2022.9789677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we investigate the selectivity improvements of vapor trace detection system (VPDS) built of the array of differently functionalized comb capacitive sensors and extremely sensitive integrated electronic circuits. We present some simple theoretical background, a complete detection system, calibration procedure and some measured results. To improve the selectivity, we propose to use increased number of differently modified sensors together with machine learning algorithms for more efficient pattern recognition.
蒸汽痕量检测系统的选择性
本文研究了由不同功能化的梳状电容传感器阵列和极灵敏集成电子电路组成的气相痕量检测系统(VPDS)的选择性改进。本文介绍了一些简单的理论背景、完整的检测系统、校准程序和一些测量结果。为了提高选择性,我们建议使用更多的不同修改的传感器以及机器学习算法来进行更有效的模式识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信