An efficient de-noising algorithm for infrared image

Changjiang Zhang, Jinshan Wang, Xiaodong Wang
{"title":"An efficient de-noising algorithm for infrared image","authors":"Changjiang Zhang, Jinshan Wang, Xiaodong Wang","doi":"10.1109/ICIA.2005.1635142","DOIUrl":null,"url":null,"abstract":"Employing discrete stationary wavelet transform (DSWT) and generalized cross validation (GCV), an efficient denoising algorithm for infrared image is proposed. Asymptotical optimal threshold can be obtained, without knowing the variance of noise, only employing the known input image data. Having implemented DSWT to an infrared image, additive Gauss white noise (AGWN), 1/f noise and multiplicative noise (MN) can be suppressed efficiently in the high frequency sub-bands of each decomposition level respectively. Experimental results show that the new algorithm can reduce efficiently the AGWN and 1/f noise in the infrared image while keeps the detail information of targets well. In performance index and visual quality, the new algorithm is more excellent than the de-noising algorithm based on discrete orthogonal wavelet transform (DOWT) and the conditional median value filter (MVF).","PeriodicalId":136611,"journal":{"name":"2005 IEEE International Conference on Information Acquisition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Information Acquisition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2005.1635142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Employing discrete stationary wavelet transform (DSWT) and generalized cross validation (GCV), an efficient denoising algorithm for infrared image is proposed. Asymptotical optimal threshold can be obtained, without knowing the variance of noise, only employing the known input image data. Having implemented DSWT to an infrared image, additive Gauss white noise (AGWN), 1/f noise and multiplicative noise (MN) can be suppressed efficiently in the high frequency sub-bands of each decomposition level respectively. Experimental results show that the new algorithm can reduce efficiently the AGWN and 1/f noise in the infrared image while keeps the detail information of targets well. In performance index and visual quality, the new algorithm is more excellent than the de-noising algorithm based on discrete orthogonal wavelet transform (DOWT) and the conditional median value filter (MVF).
一种有效的红外图像去噪算法
采用离散平稳小波变换(DSWT)和广义交叉验证(GCV),提出了一种有效的红外图像去噪算法。在不知道噪声方差的情况下,只使用已知的输入图像数据,即可得到渐近最优阈值。通过对红外图像进行DSWT处理,可以有效地抑制加性高斯白噪声(AGWN)、1/f噪声(MN)和乘性噪声(MN)。实验结果表明,该算法能有效地降低红外图像中的AGWN和1/f噪声,同时很好地保留了目标的细节信息。在性能指标和视觉质量方面,新算法优于基于离散正交小波变换(DOWT)和条件中值滤波(MVF)的去噪算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信