Rosa Filgueira, Rafael Ferreira da Silva, A. Krause, E. Deelman, M. Atkinson
{"title":"Asterism: Pegasus and Dispel4py Hybrid Workflows for Data-Intensive Science","authors":"Rosa Filgueira, Rafael Ferreira da Silva, A. Krause, E. Deelman, M. Atkinson","doi":"10.1109/DATACLOUD.2016.4","DOIUrl":null,"url":null,"abstract":"We present Asterism, an open source data-intensive framework, which combines the strengths of traditional workflow management systems with new parallel stream-based dataflow systems to run data-intensive applications across multiple heterogeneous resources, without users having to: re-formulate their methods according to different enactment engines; manage the data distribution across systems; parallelize their methods; co-place and schedule their methods with computing resources; and store and transfer large/small volumes of data. We also present the Data-Intensive workflows as a Service (DIaaS) model, which enables easy dataintensive workow composition and deployment on clouds using containers. The feasibility of Asterism and DIaaS model have been evaluated using a real domain application on the NSF-Chameleon cloud. Experimental results shows how Asterism successfully and efficiently exploits combinations of diverse computational platforms, whereas DIaaS delivers specialized software to execute data-intensive applications in a scalable, efficient, and robust way reducing the engineering time and computational cost.","PeriodicalId":325593,"journal":{"name":"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATACLOUD.2016.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
We present Asterism, an open source data-intensive framework, which combines the strengths of traditional workflow management systems with new parallel stream-based dataflow systems to run data-intensive applications across multiple heterogeneous resources, without users having to: re-formulate their methods according to different enactment engines; manage the data distribution across systems; parallelize their methods; co-place and schedule their methods with computing resources; and store and transfer large/small volumes of data. We also present the Data-Intensive workflows as a Service (DIaaS) model, which enables easy dataintensive workow composition and deployment on clouds using containers. The feasibility of Asterism and DIaaS model have been evaluated using a real domain application on the NSF-Chameleon cloud. Experimental results shows how Asterism successfully and efficiently exploits combinations of diverse computational platforms, whereas DIaaS delivers specialized software to execute data-intensive applications in a scalable, efficient, and robust way reducing the engineering time and computational cost.