Adaptive Energy-Aware Scheduling of Dynamic Event Analytics Across Edge and Cloud Resources

Rajrup Ghosh, Siva Prakash Reddy Komma, Yogesh L. Simmhan
{"title":"Adaptive Energy-Aware Scheduling of Dynamic Event Analytics Across Edge and Cloud Resources","authors":"Rajrup Ghosh, Siva Prakash Reddy Komma, Yogesh L. Simmhan","doi":"10.1109/CCGRID.2018.00022","DOIUrl":null,"url":null,"abstract":"The growing deployment of sensors as part of Internet of Things (IoT) is generating thousands of event streams. Complex Event Processing (CEP) queries offer a useful paradigm for rapid decision-making over such data sources. While often centralized in the Cloud, the deployment of capable edge devices on the field motivates the need for cooperative event analytics that span Edge and Cloud computing. Here, we identify a novel problem of query placement on edge and Cloud resources for dynamically arriving and departing analytic dataflows. We define this as an optimization problem to minimize the total makespan for all event analytics, while meeting energy and compute constraints of the resources. We propose 4 adaptive heuristics and 3 rebalancing strategies for such dynamic dataflows, and validate them using detailed simulations for 100 - 1000 edge devices and VMs. The results show that our heuristics offer O(seconds) planning time, give a valid and high quality solution in all cases, and reduce the number of query migrations. Furthermore, rebalance strategies when applied in these heuristics have significantly reduced the makespan by around 20 - 25%.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The growing deployment of sensors as part of Internet of Things (IoT) is generating thousands of event streams. Complex Event Processing (CEP) queries offer a useful paradigm for rapid decision-making over such data sources. While often centralized in the Cloud, the deployment of capable edge devices on the field motivates the need for cooperative event analytics that span Edge and Cloud computing. Here, we identify a novel problem of query placement on edge and Cloud resources for dynamically arriving and departing analytic dataflows. We define this as an optimization problem to minimize the total makespan for all event analytics, while meeting energy and compute constraints of the resources. We propose 4 adaptive heuristics and 3 rebalancing strategies for such dynamic dataflows, and validate them using detailed simulations for 100 - 1000 edge devices and VMs. The results show that our heuristics offer O(seconds) planning time, give a valid and high quality solution in all cases, and reduce the number of query migrations. Furthermore, rebalance strategies when applied in these heuristics have significantly reduced the makespan by around 20 - 25%.
跨边缘和云资源的动态事件分析的自适应能量感知调度
作为物联网(IoT)的一部分,越来越多的传感器部署正在产生数千个事件流。复杂事件处理(CEP)查询为对此类数据源进行快速决策提供了一个有用的范例。虽然通常集中在云中,但在现场部署功能强大的边缘设备激发了对跨边缘和云计算的协作事件分析的需求。在这里,我们为动态到达和离开分析数据流确定了在边缘和云资源上放置查询的新问题。我们将其定义为最小化所有事件分析的总完工时间的优化问题,同时满足资源的能量和计算约束。我们针对这些动态数据流提出了4种自适应启发式和3种再平衡策略,并使用100 - 1000个边缘设备和虚拟机的详细模拟验证了它们。结果表明,我们的启发式算法提供了0(秒)的规划时间,在所有情况下都给出了有效和高质量的解决方案,并减少了查询迁移的次数。此外,当在这些启发式方法中应用再平衡策略时,可以显着减少大约20 - 25%的完工时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信