{"title":"Node allocation in Peer-to-peer overlay networks based remote instrumentation with smart devices","authors":"Ananda Maiti, Andrew D. Maxwell, A. Kist","doi":"10.1109/ATNAC.2016.7878807","DOIUrl":null,"url":null,"abstract":"Smart devices networks make the backbone of many Internet of Things (IoT) applications. The performance of these systems can be depended on many factors including response time or latency between them and the ability to interconnect between devices. In this paper, a Peer-to-peer (P2P) overlay network is discussed that can be used for real-time end-to-end remote instrumentation for IoT applications. P2P overlay networks are used for various purposes from content distribution through to media sharing. But in contrast to traditional P2P systems, IoT systems can be highly sensitive to network latency. The main contribution of this paper is a distributed algorithm to create the overlay network that assigns peer nodes to super-peer nodes in the network containing large numbers of smart devices with the aim of minimizing system wide network latency. Other constraints regarding the nodes ability to become a super-peer node such as connectivity and limited processing capacities of the smart devices are also considered in context of a P2P remote instrumentation system. The algorithm has been validated through simulation.","PeriodicalId":317649,"journal":{"name":"2016 26th International Telecommunication Networks and Applications Conference (ITNAC)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 26th International Telecommunication Networks and Applications Conference (ITNAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATNAC.2016.7878807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Smart devices networks make the backbone of many Internet of Things (IoT) applications. The performance of these systems can be depended on many factors including response time or latency between them and the ability to interconnect between devices. In this paper, a Peer-to-peer (P2P) overlay network is discussed that can be used for real-time end-to-end remote instrumentation for IoT applications. P2P overlay networks are used for various purposes from content distribution through to media sharing. But in contrast to traditional P2P systems, IoT systems can be highly sensitive to network latency. The main contribution of this paper is a distributed algorithm to create the overlay network that assigns peer nodes to super-peer nodes in the network containing large numbers of smart devices with the aim of minimizing system wide network latency. Other constraints regarding the nodes ability to become a super-peer node such as connectivity and limited processing capacities of the smart devices are also considered in context of a P2P remote instrumentation system. The algorithm has been validated through simulation.