Outage Analysis and Power Allocation for Distributed Space-Time Coding-Based Cooperative Systems over Rayleigh Fading Channels

In-Ho Lee
{"title":"Outage Analysis and Power Allocation for Distributed Space-Time Coding-Based Cooperative Systems over Rayleigh Fading Channels","authors":"In-Ho Lee","doi":"10.6109/jicce.2017.15.1.21","DOIUrl":null,"url":null,"abstract":"In this research, we study the outage probability for distributed space-time coding-based cooperative (DSTC) systems with amplify-and-forward relaying over Rayleigh fading channels with a high temporal correlation where the direct link between the source and the destination is available. In particular, we derive the upper and lower bounds of the outage probability as well as their corresponding asymptotic expressions. In addition, using only the average channel powers for the source-to-relay and relay-to-destination links, we propose an efficient power allocation scheme between the source and the relay to minimize the asymptotic upper bound of the outage probability. Through a numerical investigation, we verify the analytical expressions as well as the effectiveness of the proposed efficient power allocation. The numerical results show that the lower and upper bounds tightly correspond to the exact outage probability, and the proposed efficient power allocation scheme provides an outage probability similar to that of the optimal power allocation scheme that minimizes the exact outage probability.","PeriodicalId":272551,"journal":{"name":"J. Inform. and Commun. Convergence Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inform. and Commun. Convergence Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6109/jicce.2017.15.1.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this research, we study the outage probability for distributed space-time coding-based cooperative (DSTC) systems with amplify-and-forward relaying over Rayleigh fading channels with a high temporal correlation where the direct link between the source and the destination is available. In particular, we derive the upper and lower bounds of the outage probability as well as their corresponding asymptotic expressions. In addition, using only the average channel powers for the source-to-relay and relay-to-destination links, we propose an efficient power allocation scheme between the source and the relay to minimize the asymptotic upper bound of the outage probability. Through a numerical investigation, we verify the analytical expressions as well as the effectiveness of the proposed efficient power allocation. The numerical results show that the lower and upper bounds tightly correspond to the exact outage probability, and the proposed efficient power allocation scheme provides an outage probability similar to that of the optimal power allocation scheme that minimizes the exact outage probability.
基于瑞利衰落信道的分布式空时编码协同系统的停电分析与功率分配
在本研究中,我们研究了在具有高时间相关性的瑞利衰落信道上具有放大转发中继的分布式空时编码合作(DSTC)系统的中断概率,其中源和目标之间存在直接链路。特别地,我们导出了中断概率的上界和下界及其相应的渐近表达式。此外,仅使用源到中继和中继到目的链路的平均信道功率,我们提出了一种在源和中继之间有效的功率分配方案,以最小化停电概率的渐近上界。通过数值研究,验证了解析表达式以及所提出的高效功率分配的有效性。数值计算结果表明,下上界与精确停电概率紧密对应,所提出的有效功率分配方案提供了与精确停电概率最小化的最优功率分配方案相似的停电概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信