{"title":"Finite-time convergence policies in state-dependent social networks","authors":"D. Silvestre, P. Rosa, J. Hespanha, C. Silvestre","doi":"10.1109/ACC.2015.7170870","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of finite-time convergence in a social network for a political party or an association, modeled as a distributed iterative system with a graph dynamics chosen to mimic how people interact. It is firstly shown that, in this setting, finite-time convergence is achieved only when nodes form a complete network, and that contacting with agents with distinct opinions reduces to a half the required interconnections. Two novel strategies are presented that enable finite-time convergence, even for the case where each node only contacts the two closest neighbors. These strategies are of prime importance, for instance, in a company environment where agents can be motivated to reach faster conclusions. The performance of the proposed policies is assessed through simulation, illustrating, in particular the finite-time convergence property.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7170870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper addresses the problem of finite-time convergence in a social network for a political party or an association, modeled as a distributed iterative system with a graph dynamics chosen to mimic how people interact. It is firstly shown that, in this setting, finite-time convergence is achieved only when nodes form a complete network, and that contacting with agents with distinct opinions reduces to a half the required interconnections. Two novel strategies are presented that enable finite-time convergence, even for the case where each node only contacts the two closest neighbors. These strategies are of prime importance, for instance, in a company environment where agents can be motivated to reach faster conclusions. The performance of the proposed policies is assessed through simulation, illustrating, in particular the finite-time convergence property.