Towards Capturing Changes in Mood and Identifying Suicidality Risk

Sravani Boinepelli, S. Subramanian, Abhijeeth Singam, Tathagata Raha, Vasudeva Varma
{"title":"Towards Capturing Changes in Mood and Identifying Suicidality Risk","authors":"Sravani Boinepelli, S. Subramanian, Abhijeeth Singam, Tathagata Raha, Vasudeva Varma","doi":"10.18653/v1/2022.clpsych-1.24","DOIUrl":null,"url":null,"abstract":"This paper describes our systems for CLPsych?s 2022 Shared Task. Subtask A involves capturing moments of change in an individual?s mood over time, while Subtask B asked us to identify the suicidality risk of a user. We explore multiple machine learning and deep learning methods for the same, taking real-life applicability into account while considering the design of the architecture. Our team achieved top results in different categories for both subtasks. Task A was evaluated on a post-level (using macro averaged F1) and on a window-based timeline level (using macro-averaged precision and recall). We scored a post-level F1 of 0.520 and ranked second with a timeline-level recall of 0.646. Task B was a user-level task where we also came in second with a micro F1 of 0.520 and scored third place on the leaderboard with a macro F1 of 0.380.","PeriodicalId":107109,"journal":{"name":"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.clpsych-1.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes our systems for CLPsych?s 2022 Shared Task. Subtask A involves capturing moments of change in an individual?s mood over time, while Subtask B asked us to identify the suicidality risk of a user. We explore multiple machine learning and deep learning methods for the same, taking real-life applicability into account while considering the design of the architecture. Our team achieved top results in different categories for both subtasks. Task A was evaluated on a post-level (using macro averaged F1) and on a window-based timeline level (using macro-averaged precision and recall). We scored a post-level F1 of 0.520 and ranked second with a timeline-level recall of 0.646. Task B was a user-level task where we also came in second with a micro F1 of 0.520 and scored third place on the leaderboard with a macro F1 of 0.380.
捕捉情绪变化和识别自杀风险
本文描述了我们的CLPsych?s 2022共享任务。子任务A涉及捕捉个体变化的瞬间?而子任务B则要求我们识别用户的自杀风险。我们探索了多种机器学习和深度学习方法,在考虑架构设计的同时考虑了现实生活中的适用性。我们的团队在两个子任务的不同类别中都取得了最好的成绩。任务A在事后级别(使用宏观平均F1)和基于窗口的时间轴级别(使用宏观平均精度和召回率)上进行评估。我们的后水平F1得分为0.520,时间线水平召回率为0.646,排名第二。任务B是一个用户级别的任务,我们也以0.520的微观F1排名第二,以0.380的宏观F1排名第三。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信