Using community detection for sentiment analysis

Paul Parau, A. Stef, C. Lemnaru, M. Dînsoreanu, R. Potolea
{"title":"Using community detection for sentiment analysis","authors":"Paul Parau, A. Stef, C. Lemnaru, M. Dînsoreanu, R. Potolea","doi":"10.1109/ICCP.2013.6646080","DOIUrl":null,"url":null,"abstract":"This paper presents a system for identifying communities in networks built based on opinions and social data. We show how we can build graphs from opinions and social interactions and how we identify the community structure of these graphs. We handle both types of data: one-dimensional and multidimensional. As community detection method, we use the Infomap algorithm. The dimensions considered for identifying communities are one or many opinions and social attributes. We show how contradictions can be detected using the identified communities.","PeriodicalId":380109,"journal":{"name":"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2013.6646080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a system for identifying communities in networks built based on opinions and social data. We show how we can build graphs from opinions and social interactions and how we identify the community structure of these graphs. We handle both types of data: one-dimensional and multidimensional. As community detection method, we use the Infomap algorithm. The dimensions considered for identifying communities are one or many opinions and social attributes. We show how contradictions can be detected using the identified communities.
使用社区检测进行情感分析
本文提出了一个基于意见和社会数据的网络社区识别系统。我们展示了如何从观点和社会互动中构建图表,以及如何识别这些图表的社区结构。我们处理两种类型的数据:一维和多维。作为社区检测方法,我们使用了Infomap算法。用于识别社区的维度是一个或多个意见和社会属性。我们展示了如何使用已识别的社区来检测矛盾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信