On $(k,\mu )$-Paracontact Manifold Satisfying Some Curvature Conditions

Pakize Uygun, M. Atc̣eken
{"title":"On $(k,\\mu )$-Paracontact Manifold Satisfying Some Curvature Conditions","authors":"Pakize Uygun, M. Atc̣eken","doi":"10.47000/tjmcs.1153650","DOIUrl":null,"url":null,"abstract":"In this work, we studied the curvature tensors of (k,$\\mu$) satisfying the conditions $\\widetilde{Z}(\\xi ,\\alpha _{3})\\cdot P=0$, $\\widetilde{Z}(\\xi ,\\alpha _{3})\\cdot S=0$, $R(\\xi ,\\alpha _{3})\\cdot P=0$, $R(\\xi ,\\alpha _{3})\\cdot S=0$ and $P\\cdot C=0$. Besides this, we classify $(k,\\mu)$-paracontact manifolds. Also we researched conformally flat and $\\phi $-conformally flat a $(k,\\mu )-$paracontact metric manifolds.","PeriodicalId":177259,"journal":{"name":"Turkish Journal of Mathematics and Computer Science","volume":"16 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47000/tjmcs.1153650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we studied the curvature tensors of (k,$\mu$) satisfying the conditions $\widetilde{Z}(\xi ,\alpha _{3})\cdot P=0$, $\widetilde{Z}(\xi ,\alpha _{3})\cdot S=0$, $R(\xi ,\alpha _{3})\cdot P=0$, $R(\xi ,\alpha _{3})\cdot S=0$ and $P\cdot C=0$. Besides this, we classify $(k,\mu)$-paracontact manifolds. Also we researched conformally flat and $\phi $-conformally flat a $(k,\mu )-$paracontact metric manifolds.
$(k,\mu)$-副接触流形满足某些曲率条件
在这项工作中,我们研究了满足$\widetilde{Z}(\xi ,\alpha _{3})\cdot P=0$, $\widetilde{Z}(\xi ,\alpha _{3})\cdot S=0$, $R(\xi ,\alpha _{3})\cdot P=0$, $R(\xi ,\alpha _{3})\cdot S=0$和$P\cdot C=0$条件的(k, $\mu$)的曲率张量。除此之外,我们对$(k,\mu)$ -副接触流形进行了分类。同时研究了共形平面和$\phi $ -共形平面和$(k,\mu )-$副接触度量流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信