Feature Reduction on Fuzzy SVM-Based Coding Unit Decision in HEVC

Ei Ei Tun, S. Aramvith, Y. Miyanaga
{"title":"Feature Reduction on Fuzzy SVM-Based Coding Unit Decision in HEVC","authors":"Ei Ei Tun, S. Aramvith, Y. Miyanaga","doi":"10.1109/ICEAST.2018.8434467","DOIUrl":null,"url":null,"abstract":"This paper proposes a feature reduction approach on a fuzzy SVM-based Coding Unit (CU) size decision method in a recent video encoding standard, High Efficiency Video Coding (HEVC). The proposed feature reduction approach with Rate Control (RC) can reduce computational complexity by eliminating some correlated features of a fuzzy SVM-based CU size decision method under a similar coding efficiency. According to the empirical results, our approach can achieve up to 3% of Time Saving (TS) under the same RD performance over a fuzzy SVM-based approach.","PeriodicalId":138654,"journal":{"name":"2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAST.2018.8434467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a feature reduction approach on a fuzzy SVM-based Coding Unit (CU) size decision method in a recent video encoding standard, High Efficiency Video Coding (HEVC). The proposed feature reduction approach with Rate Control (RC) can reduce computational complexity by eliminating some correlated features of a fuzzy SVM-based CU size decision method under a similar coding efficiency. According to the empirical results, our approach can achieve up to 3% of Time Saving (TS) under the same RD performance over a fuzzy SVM-based approach.
基于模糊支持向量机的HEVC编码单元决策特征约简
本文提出了一种基于模糊支持向量机的编码单元(CU)大小决定方法的特征约简方法。本文提出的基于率控制的特征约简方法在编码效率相似的情况下,消除了基于模糊支持向量机的CU大小决策方法的一些相关特征,从而降低了计算复杂度。根据实证结果,在相同的研发性能下,我们的方法可以比基于模糊支持向量机的方法节省高达3%的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信