{"title":"Resilience at the edge in cyber-physical systems","authors":"A. Dubey, G. Karsai, Subhav Pradhan","doi":"10.1109/FMEC.2017.7946421","DOIUrl":null,"url":null,"abstract":"As the number of low cost computing devices at the edge of communication network increase, there are greater opportunities to enable innovative capabilities, especially in cyber-physical systems. For example, micro-grid power systems can make use of computing capabilities at the edge of a Smart Grid to provide more robust and decentralized control. However, the downside to distributing intelligence to the edge away from the controlled environment of the data centers is the increased risk of failures. The paper introduces a framework for handling these challenges. The contribution of this framework is to support strategies to (a) tolerate the transient faults as they appear due to network fluctuations or node failures, and to (b) systematically reconfigure the application if the faults persist.","PeriodicalId":426271,"journal":{"name":"2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMEC.2017.7946421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
As the number of low cost computing devices at the edge of communication network increase, there are greater opportunities to enable innovative capabilities, especially in cyber-physical systems. For example, micro-grid power systems can make use of computing capabilities at the edge of a Smart Grid to provide more robust and decentralized control. However, the downside to distributing intelligence to the edge away from the controlled environment of the data centers is the increased risk of failures. The paper introduces a framework for handling these challenges. The contribution of this framework is to support strategies to (a) tolerate the transient faults as they appear due to network fluctuations or node failures, and to (b) systematically reconfigure the application if the faults persist.