Automatic Image Annotation Based on Visual Cognitive Theory

Y. Kamoi, Y. Furukawa, T. Sato, Y. Kiwada, T. Takagi
{"title":"Automatic Image Annotation Based on Visual Cognitive Theory","authors":"Y. Kamoi, Y. Furukawa, T. Sato, Y. Kiwada, T. Takagi","doi":"10.1109/NAFIPS.2007.383844","DOIUrl":null,"url":null,"abstract":"This paper presents a new method of automatic image annotation based on visual cognitive theory that improves the accuracy of image recognition by taking two semantic levels of keywords that give feedback to each other into consideration. Our system first segments an image and recognizes objects in the K-Nearest Neighbor (KNN). It then recognizes contexts by using them from networked knowledge. After that, it re-recognizes objects depending on these contexts. We adopted natural images for experiments and verified the system's effectiveness. As a result, we obtained improved recognition rates compared with KNN. We proved that our system that takes the semantic levels of keywords into account has great potential for enhancing image recognition.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a new method of automatic image annotation based on visual cognitive theory that improves the accuracy of image recognition by taking two semantic levels of keywords that give feedback to each other into consideration. Our system first segments an image and recognizes objects in the K-Nearest Neighbor (KNN). It then recognizes contexts by using them from networked knowledge. After that, it re-recognizes objects depending on these contexts. We adopted natural images for experiments and verified the system's effectiveness. As a result, we obtained improved recognition rates compared with KNN. We proved that our system that takes the semantic levels of keywords into account has great potential for enhancing image recognition.
基于视觉认知理论的图像自动标注
本文提出了一种基于视觉认知理论的图像自动标注方法,该方法利用关键词的两个语义层次相互反馈,提高了图像识别的准确率。我们的系统首先对图像进行分割,并在k近邻(KNN)中识别物体。然后,它通过使用网络知识来识别上下文。之后,它根据这些上下文重新识别对象。采用自然图像进行实验,验证了系统的有效性。结果,我们获得了比KNN更高的识别率。我们证明了考虑关键字语义层次的系统在增强图像识别方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信