Uncertainty Treemaps

Max Sondag, Wouter Meulemans, C. Schulz, Kevin Verbeek, D. Weiskopf, B. Speckmann
{"title":"Uncertainty Treemaps","authors":"Max Sondag, Wouter Meulemans, C. Schulz, Kevin Verbeek, D. Weiskopf, B. Speckmann","doi":"10.1109/PacificVis48177.2020.7614","DOIUrl":null,"url":null,"abstract":"Rectangular treemaps visualize hierarchical numerical data by recursively partitioning an input rectangle into smaller rectangles whose areas match the data. Numerical data often has uncertainty associated with it. To visualize uncertainty in a rectangular treemap, we identify two conflicting key requirements: (i) to assess the data value of a node in the hierarchy, the area of its rectangle should directly match its data value, and (ii) to facilitate comparison between data and uncertainty, uncertainty should be encoded using the same visual variable as the data, that is, area. We present Uncertainty Treemaps, which meet both requirements simultaneously by introducing the concept of hierarchical uncertainty masks. First, we define a new cost function that measures the quality of Uncertainty Treemaps. Then, we show how to adapt existing treemapping algorithms to support uncertainty masks. Finally, we demonstrate the usefulness and quality of our technique through an expert review and a computational experiment on real-world datasets.","PeriodicalId":322092,"journal":{"name":"2020 IEEE Pacific Visualization Symposium (PacificVis)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis48177.2020.7614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Rectangular treemaps visualize hierarchical numerical data by recursively partitioning an input rectangle into smaller rectangles whose areas match the data. Numerical data often has uncertainty associated with it. To visualize uncertainty in a rectangular treemap, we identify two conflicting key requirements: (i) to assess the data value of a node in the hierarchy, the area of its rectangle should directly match its data value, and (ii) to facilitate comparison between data and uncertainty, uncertainty should be encoded using the same visual variable as the data, that is, area. We present Uncertainty Treemaps, which meet both requirements simultaneously by introducing the concept of hierarchical uncertainty masks. First, we define a new cost function that measures the quality of Uncertainty Treemaps. Then, we show how to adapt existing treemapping algorithms to support uncertainty masks. Finally, we demonstrate the usefulness and quality of our technique through an expert review and a computational experiment on real-world datasets.
不确定性treemap
矩形树图通过递归地将输入矩形划分为面积与数据匹配的更小的矩形来可视化分层数字数据。数值数据通常具有不确定性。为了可视化矩形树图中的不确定性,我们确定了两个相互冲突的关键要求:(i)为了评估层次结构中节点的数据值,其矩形的面积应直接匹配其数据值;(ii)为了便于数据和不确定性之间的比较,不确定性应使用与数据相同的可视化变量进行编码,即面积。我们提出了不确定性树图,通过引入分层不确定性掩模的概念,同时满足了这两个要求。首先,我们定义了一个新的成本函数来衡量不确定性树图的质量。然后,我们展示了如何调整现有的树映射算法来支持不确定性掩模。最后,我们通过专家评审和现实世界数据集的计算实验证明了我们技术的有效性和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信