Self-organizing neural networks using adaptive neurons

Jong-Seok Lee, C. Park
{"title":"Self-organizing neural networks using adaptive neurons","authors":"Jong-Seok Lee, C. Park","doi":"10.1109/ICONIP.2002.1198198","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new kind of neural network having modular structure, neural network with adaptive neurons. Each module is equivalent to an adaptive neuron, which consists of a multi-layer neural network with sigmoid neurons. We develop an algorithm by which the network can automatically adjust its complexity according to the given problem. The proposed network is compared with the project pursuit learning network (PPLN), which is a popular modular architecture. The experimental results demonstrate that the proposed network architecture outperforms the PPLN on four regression problems.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a new kind of neural network having modular structure, neural network with adaptive neurons. Each module is equivalent to an adaptive neuron, which consists of a multi-layer neural network with sigmoid neurons. We develop an algorithm by which the network can automatically adjust its complexity according to the given problem. The proposed network is compared with the project pursuit learning network (PPLN), which is a popular modular architecture. The experimental results demonstrate that the proposed network architecture outperforms the PPLN on four regression problems.
自适应神经元的自组织神经网络
本文提出了一种具有模块化结构的新型神经网络——自适应神经元神经网络。每个模块相当于一个自适应神经元,由一个具有s形神经元的多层神经网络组成。我们开发了一种算法,通过该算法,网络可以根据给定的问题自动调整其复杂性。将该网络与项目追求学习网络(PPLN)进行了比较,PPLN是一种流行的模块化结构。实验结果表明,本文提出的网络结构在4个回归问题上优于PPLN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信