In-situ multi-view multi-scattering stochastic tomography

Vadim Holodovsky, Y. Schechner, Anat Levin, Aviad Levis, Amit Aides
{"title":"In-situ multi-view multi-scattering stochastic tomography","authors":"Vadim Holodovsky, Y. Schechner, Anat Levin, Aviad Levis, Amit Aides","doi":"10.1109/ICCPHOT.2016.7492869","DOIUrl":null,"url":null,"abstract":"To recover the three dimensional (3D) volumetric matter distribution in an object, the object is imaged from multiple directions and locations. Using these images, tomographic computations seek the distribution. When scattering is significant and under constrained irradiance, tomography must explicitly account for off-axis scattering. Furthermore, tomographic recovery must function when imaging is done in-situ, as occurs in medical imaging and ground-based atmospheric sensing. We formulate tomography that handles arbitrary orders of scattering, using a Monte-Carlo model. The model is highly parallelizable in our formulation. This can enable large scale rendering and recovery of volumetric scenes having a large number of variables. We solve stability and conditioning problems that stem from radiative transfer modeling in-situ.","PeriodicalId":156635,"journal":{"name":"2016 IEEE International Conference on Computational Photography (ICCP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPHOT.2016.7492869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

To recover the three dimensional (3D) volumetric matter distribution in an object, the object is imaged from multiple directions and locations. Using these images, tomographic computations seek the distribution. When scattering is significant and under constrained irradiance, tomography must explicitly account for off-axis scattering. Furthermore, tomographic recovery must function when imaging is done in-situ, as occurs in medical imaging and ground-based atmospheric sensing. We formulate tomography that handles arbitrary orders of scattering, using a Monte-Carlo model. The model is highly parallelizable in our formulation. This can enable large scale rendering and recovery of volumetric scenes having a large number of variables. We solve stability and conditioning problems that stem from radiative transfer modeling in-situ.
原位多视点多散射随机层析成像
为了恢复物体的三维体积物质分布,需要从多个方向和位置对物体进行成像。利用这些图像,层析计算求分布。当散射显著且辐照度受限时,层析成像必须明确考虑离轴散射。此外,层析成像恢复必须在原位成像时发挥作用,如在医学成像和地面大气传感中发生的那样。我们使用蒙特卡罗模型制定处理任意阶散射的断层扫描。该模型在我们的公式中具有高度的并行性。这可以实现具有大量变量的体积场景的大规模渲染和恢复。我们解决稳定性和调节问题,源于辐射传输模拟原位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信