A Parallel Library for Social Media Analytics

Loris Belcastro, F. Marozzo, D. Talia, Paolo Trunfio
{"title":"A Parallel Library for Social Media Analytics","authors":"Loris Belcastro, F. Marozzo, D. Talia, Paolo Trunfio","doi":"10.1109/HPCS.2017.105","DOIUrl":null,"url":null,"abstract":"Social media analysis is a fast growing research area aimed at extracting useful information from huge amounts of data generated by social media users. This work presents a Java library, called ParSoDA (Parallel Social Data Analytics), which can be used for developing parallel data analysis applications based on the extraction of useful knowledge from large dataset gathered from social networks. The library aims at reducing the programming skills necessary to implement scalable social data analysis applications. To reach this goal, ParSoDA defines a general structure for a social data analysis application that includes a number of configurable steps, and provides a predefined (but extensible) set of functions that can be used for each step. The paper describes the ParSoDA library and presents two case studies to assess its usability and scalability.","PeriodicalId":115758,"journal":{"name":"2017 International Conference on High Performance Computing & Simulation (HPCS)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS.2017.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Social media analysis is a fast growing research area aimed at extracting useful information from huge amounts of data generated by social media users. This work presents a Java library, called ParSoDA (Parallel Social Data Analytics), which can be used for developing parallel data analysis applications based on the extraction of useful knowledge from large dataset gathered from social networks. The library aims at reducing the programming skills necessary to implement scalable social data analysis applications. To reach this goal, ParSoDA defines a general structure for a social data analysis application that includes a number of configurable steps, and provides a predefined (but extensible) set of functions that can be used for each step. The paper describes the ParSoDA library and presents two case studies to assess its usability and scalability.
社交媒体分析的并行库
社交媒体分析是一个快速发展的研究领域,旨在从社交媒体用户产生的大量数据中提取有用的信息。这项工作提出了一个名为ParSoDA(并行社会数据分析)的Java库,它可以用于开发基于从社交网络收集的大型数据集中提取有用知识的并行数据分析应用程序。该库旨在减少实现可扩展的社会数据分析应用程序所需的编程技能。为了实现这一目标,ParSoDA为社会数据分析应用程序定义了一个通用结构,其中包括许多可配置的步骤,并提供了可用于每个步骤的预定义(但可扩展)函数集。本文描述了ParSoDA库,并给出了两个案例研究来评估其可用性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信