{"title":"See through walls with WiFi!","authors":"Fadel M. Adib, D. Katabi","doi":"10.1145/2486001.2486039","DOIUrl":null,"url":null,"abstract":"Wi-Fi signals are typically information carriers between a transmitter and a receiver. In this paper, we show that Wi-Fi can also extend our senses, enabling us to see moving objects through walls and behind closed doors. In particular, we can use such signals to identify the number of people in a closed room and their relative locations. We can also identify simple gestures made behind a wall, and combine a sequence of gestures to communicate messages to a wireless receiver without carrying any transmitting device. The paper introduces two main innovations. First, it shows how one can use MIMO interference nulling to eliminate reflections off static objects and focus the receiver on a moving target. Second, it shows how one can track a human by treating the motion of a human body as an antenna array and tracking the resulting RF beam. We demonstrate the validity of our design by building it into USRP software radios and testing it in office buildings.","PeriodicalId":159374,"journal":{"name":"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"689","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486001.2486039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 689
Abstract
Wi-Fi signals are typically information carriers between a transmitter and a receiver. In this paper, we show that Wi-Fi can also extend our senses, enabling us to see moving objects through walls and behind closed doors. In particular, we can use such signals to identify the number of people in a closed room and their relative locations. We can also identify simple gestures made behind a wall, and combine a sequence of gestures to communicate messages to a wireless receiver without carrying any transmitting device. The paper introduces two main innovations. First, it shows how one can use MIMO interference nulling to eliminate reflections off static objects and focus the receiver on a moving target. Second, it shows how one can track a human by treating the motion of a human body as an antenna array and tracking the resulting RF beam. We demonstrate the validity of our design by building it into USRP software radios and testing it in office buildings.