Improving induction decision trees with parallel genetic programming

G. Folino, C. Pizzuti, G. Spezzano
{"title":"Improving induction decision trees with parallel genetic programming","authors":"G. Folino, C. Pizzuti, G. Spezzano","doi":"10.1109/EMPDP.2002.994264","DOIUrl":null,"url":null,"abstract":"A parallel genetic programming approach to induce decision trees in large data sets is presented. A population of trees is evolved by employing the genetic operators and every individual is evaluated by using a fitness function based on the J-measure. The method is able to deal with large data sets since it uses a parallel implementation of genetic programming through the grid model. Experiments on data sets from the UCI machine learning repository show better results with respect to C5. Furthermore, performance results show a nearly linear speedup.","PeriodicalId":126071,"journal":{"name":"Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMPDP.2002.994264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

A parallel genetic programming approach to induce decision trees in large data sets is presented. A population of trees is evolved by employing the genetic operators and every individual is evaluated by using a fitness function based on the J-measure. The method is able to deal with large data sets since it uses a parallel implementation of genetic programming through the grid model. Experiments on data sets from the UCI machine learning repository show better results with respect to C5. Furthermore, performance results show a nearly linear speedup.
用并行遗传规划改进归纳决策树
提出了一种求解大型数据集决策树的并行遗传规划方法。通过使用遗传算子来进化树的种群,并使用基于j测度的适应度函数来评估每个个体。该方法能够处理大型数据集,因为它通过网格模型使用了遗传规划的并行实现。在UCI机器学习存储库的数据集上进行的实验表明,相对于C5, C5的效果更好。此外,性能结果显示了近乎线性的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信