Extended-Reach Horizontal Well with Excellent Inflow Control Device Completion Production and Sand-Free Gravel-Packing Integrated Solution Performance: A Case Study from S-Field, Offshore Malaysia
A. A. Abu Bakar, Amir Badzly M Nazri, P. Shankar, Nor Arina M Azam, Aida Nor Hidayah Abu Bakar, Nor Azman Che Mahmood, Zairi A. Kadir, Zayful Hasrin Kamarudzaman, Mior Yusni Ahmad, Ibrahim B. Subari, A. Ridzuan, Norhayati M Sahid, Chee Seong Tan, Nicholas Moses, Zhen-Xuan Yew, Agnes Tan, G. Goh
{"title":"Extended-Reach Horizontal Well with Excellent Inflow Control Device Completion Production and Sand-Free Gravel-Packing Integrated Solution Performance: A Case Study from S-Field, Offshore Malaysia","authors":"A. A. Abu Bakar, Amir Badzly M Nazri, P. Shankar, Nor Arina M Azam, Aida Nor Hidayah Abu Bakar, Nor Azman Che Mahmood, Zairi A. Kadir, Zayful Hasrin Kamarudzaman, Mior Yusni Ahmad, Ibrahim B. Subari, A. Ridzuan, Norhayati M Sahid, Chee Seong Tan, Nicholas Moses, Zhen-Xuan Yew, Agnes Tan, G. Goh","doi":"10.2523/iptc-23007-ms","DOIUrl":null,"url":null,"abstract":"\n In Q4 2017, the first extended-reach horizontal oil producer was completed in S-Field, with the horizontal section designed with nine isolation compartments with swellable packers. Each compartment was configured with an inflow control device (ICD) and an integral sleeve (on/off function) attached to the ICD’s joint. This paper discusses the effectiveness of the ICD technology in terms of sustaining incremental cumulative oil production by delaying water-breakthrough and subsequently reducing undesired water cut after water-breakthrough.\n An extensive post-job evaluation on production performance was conducted to evaluate the performance of the installed ICDs. The workflow was divided into three stages: history matching, forecasting, and post-job ICD evaluation. During history matching, the horizontal well with the ICDs was modeled using a high-resolution numerical simulator, and the reservoir model was calibrated with production data from a well test. Actual production rates and the water-breakthrough time were matched by revisiting key subsurface uncertainties from the sector model, such as aquifer strength, oil/water-contact, and relative permeability using the Corey correlation. The history-matched model was then used for the forecasting stage to predict cumulative production on a longer-term basis. Lastly, the performance of the ICDs was quantified after 4 years of production by comparing the oil increment from the ICD completion to the non-ICD case as baseline that would have been a miss of additional oil cumulative.\n Over the past 4 years, this horizontal well produced more than expected, with approximately 2–4 times more oil production than the estimated rate provided in the field development plan (FDP), whereby the lower completion is design optimally based on real-time ICD modeling updates. There were few uncertainties in the subsurface parameters such as fluid contact, fluid characterization, and the nature of an aquifer, were incorporated in the history-matching stage using sensitivity analysis and uncertainty range estimation. On the basis of actual and history-matched production performance, the well with the installed ICDs is projected to produce more than the non-ICD OH case with an improved cumulative oil production gain of as much as 6% and an 8% water reduction over 12 years of production. In addition, the ICD enables downhole influx balancing to delay the water breakthrough by 4 months compared to the OH case. The reduction or delay of water production is beneficial to the field to enhance oil recovery from the well. This case study demonstrates a successful ICD deployment under uncertainties, where during a real-time study in 2017, similar uncertainties were incorporated in high-resolution ICD modeling conditioned with real-time petrophysical data from logging while drilling (LWD) measurements.\n The use of ICD technology in this well demonstrated that zonal control efficiency could be achieved across the horizontal section and increased oil production over time. The ICDs were designed to deter early water breakthrough supported by well tests and manual fluid sampling indicating the water production only occur after 4 years of production and sand-free till to-date.","PeriodicalId":283978,"journal":{"name":"Day 1 Wed, March 01, 2023","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Wed, March 01, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-23007-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In Q4 2017, the first extended-reach horizontal oil producer was completed in S-Field, with the horizontal section designed with nine isolation compartments with swellable packers. Each compartment was configured with an inflow control device (ICD) and an integral sleeve (on/off function) attached to the ICD’s joint. This paper discusses the effectiveness of the ICD technology in terms of sustaining incremental cumulative oil production by delaying water-breakthrough and subsequently reducing undesired water cut after water-breakthrough.
An extensive post-job evaluation on production performance was conducted to evaluate the performance of the installed ICDs. The workflow was divided into three stages: history matching, forecasting, and post-job ICD evaluation. During history matching, the horizontal well with the ICDs was modeled using a high-resolution numerical simulator, and the reservoir model was calibrated with production data from a well test. Actual production rates and the water-breakthrough time were matched by revisiting key subsurface uncertainties from the sector model, such as aquifer strength, oil/water-contact, and relative permeability using the Corey correlation. The history-matched model was then used for the forecasting stage to predict cumulative production on a longer-term basis. Lastly, the performance of the ICDs was quantified after 4 years of production by comparing the oil increment from the ICD completion to the non-ICD case as baseline that would have been a miss of additional oil cumulative.
Over the past 4 years, this horizontal well produced more than expected, with approximately 2–4 times more oil production than the estimated rate provided in the field development plan (FDP), whereby the lower completion is design optimally based on real-time ICD modeling updates. There were few uncertainties in the subsurface parameters such as fluid contact, fluid characterization, and the nature of an aquifer, were incorporated in the history-matching stage using sensitivity analysis and uncertainty range estimation. On the basis of actual and history-matched production performance, the well with the installed ICDs is projected to produce more than the non-ICD OH case with an improved cumulative oil production gain of as much as 6% and an 8% water reduction over 12 years of production. In addition, the ICD enables downhole influx balancing to delay the water breakthrough by 4 months compared to the OH case. The reduction or delay of water production is beneficial to the field to enhance oil recovery from the well. This case study demonstrates a successful ICD deployment under uncertainties, where during a real-time study in 2017, similar uncertainties were incorporated in high-resolution ICD modeling conditioned with real-time petrophysical data from logging while drilling (LWD) measurements.
The use of ICD technology in this well demonstrated that zonal control efficiency could be achieved across the horizontal section and increased oil production over time. The ICDs were designed to deter early water breakthrough supported by well tests and manual fluid sampling indicating the water production only occur after 4 years of production and sand-free till to-date.