Robust Head Detection in Collaborative Learning Environments Using AM-FM Representations

Wenjing Shi, M. Pattichis, Sylvia Celedón-Pattichis, Carlos A. LópezLeiva
{"title":"Robust Head Detection in Collaborative Learning Environments Using AM-FM Representations","authors":"Wenjing Shi, M. Pattichis, Sylvia Celedón-Pattichis, Carlos A. LópezLeiva","doi":"10.1109/SSIAI.2018.8470355","DOIUrl":null,"url":null,"abstract":"The paper introduces the problem of robust head detection in collaborative learning environments. In such environments, the camera remains fixed while the students are allowed to sit at different parts of a table. Example challenges include the fact that students may be facing away from the camera or exposing different parts of their face to the camera. To address these issues, the paper proposes the development of two new methods based on Amplitude Modulation-Frequency Modulation (AM-FM) models. First, a combined approach based on color and FM texture is developed for robust face detection. Secondly, a combined approach based on processing the AM and FM components is developed for robust, back of the head detection. The results of the two approaches are also combined to detect all of the students sitting at each table. The robust face detector achieved 79% accuracy on a set of 1000 face image examples. The back of the head detector achieved 91% accuracy on a set of 363 test image examples.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The paper introduces the problem of robust head detection in collaborative learning environments. In such environments, the camera remains fixed while the students are allowed to sit at different parts of a table. Example challenges include the fact that students may be facing away from the camera or exposing different parts of their face to the camera. To address these issues, the paper proposes the development of two new methods based on Amplitude Modulation-Frequency Modulation (AM-FM) models. First, a combined approach based on color and FM texture is developed for robust face detection. Secondly, a combined approach based on processing the AM and FM components is developed for robust, back of the head detection. The results of the two approaches are also combined to detect all of the students sitting at each table. The robust face detector achieved 79% accuracy on a set of 1000 face image examples. The back of the head detector achieved 91% accuracy on a set of 363 test image examples.
协同学习环境中基于AM-FM表征的鲁棒头部检测
本文介绍了协作学习环境下的鲁棒头部检测问题。在这样的环境中,当学生被允许坐在桌子的不同位置时,摄像机保持固定。挑战的例子包括学生可能背对着镜头,或者把脸的不同部分暴露在镜头前。为了解决这些问题,本文提出了两种基于调幅-调频(AM-FM)模型的新方法。首先,提出了一种基于颜色和调频纹理的鲁棒人脸检测方法。其次,提出了一种基于调幅和调频分量处理的鲁棒后脑检测方法。这两种方法的结果也被结合起来,以检测坐在每张桌子旁的所有学生。鲁棒人脸检测器在1000张人脸图像样本上达到了79%的准确率。在一组363个测试图像样本上,头部后部检测器的准确率达到91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信