An EVI-ASD-CFAR Processor in a Pareto background and multiple target situations

Ali Mehanaoui, T. Laroussi, M. Attalah, Aladdine Aouane
{"title":"An EVI-ASD-CFAR Processor in a Pareto background and multiple target situations","authors":"Ali Mehanaoui, T. Laroussi, M. Attalah, Aladdine Aouane","doi":"10.1109/SETIT.2016.7939887","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of automatic target detection in a Pareto background under multiple target situations. The number of interfering targets is assumed to be unknown. We derive the Enhanced Variability Index Automatic Selection and Detection Constant False Alarm Rate (EVI-ASD-CFAR) Processor. This latter selects and matches dynamically the suitable detector among the Geometric Mean (GM)-CFAR, Greatest Of(GO)-CFAR and Trimmed Mean (TM)-CFAR. The unknown background level is then estimated and set to the corresponding threshold. The detection performances of the proposed processor are assessed via Monte Carlo simulations.","PeriodicalId":426951,"journal":{"name":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SETIT.2016.7939887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper investigates the problem of automatic target detection in a Pareto background under multiple target situations. The number of interfering targets is assumed to be unknown. We derive the Enhanced Variability Index Automatic Selection and Detection Constant False Alarm Rate (EVI-ASD-CFAR) Processor. This latter selects and matches dynamically the suitable detector among the Geometric Mean (GM)-CFAR, Greatest Of(GO)-CFAR and Trimmed Mean (TM)-CFAR. The unknown background level is then estimated and set to the corresponding threshold. The detection performances of the proposed processor are assessed via Monte Carlo simulations.
在Pareto背景和多目标情况下的EVI-ASD-CFAR处理器
研究了多目标情况下Pareto背景下的目标自动检测问题。假设干扰目标的数量是未知的。我们提出了增强型变异性指数自动选择和检测恒定虚警率(EVI-ASD-CFAR)处理器。后者在几何均值(GM)-CFAR、最大Of(GO)-CFAR和修剪均值(TM)-CFAR中动态选择和匹配合适的检测器。然后估计未知的背景水平并设置相应的阈值。通过蒙特卡洛仿真评估了该处理器的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信