Drag force through gases and plasma

A. M.
{"title":"Drag force through gases and plasma","authors":"A. M.","doi":"10.17352/amp.000031","DOIUrl":null,"url":null,"abstract":"The drag force in a gas (previously derived by Stokes and Rayleigh) is derived by means of the molecular kinetics (transport equation of the momentum). Two regimes of resistance to motion are identified, governed by the relation of the velocity to the thermal (molecular) velocity. They correspond to the molecular movement, for small velocities, or to the hydrodynamic motion for high velocities. In the former case sound waves are not excited, and energy is dissipated by viscosity (friction), while in the latter case the energy is dissipated by the excitation of the sound waves. Also, the treatment is applied to the plasma. It is shown that in usual plasmas it is unlikely that the body motion excites plasmons.","PeriodicalId":430514,"journal":{"name":"Annals of Mathematics and Physics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17352/amp.000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The drag force in a gas (previously derived by Stokes and Rayleigh) is derived by means of the molecular kinetics (transport equation of the momentum). Two regimes of resistance to motion are identified, governed by the relation of the velocity to the thermal (molecular) velocity. They correspond to the molecular movement, for small velocities, or to the hydrodynamic motion for high velocities. In the former case sound waves are not excited, and energy is dissipated by viscosity (friction), while in the latter case the energy is dissipated by the excitation of the sound waves. Also, the treatment is applied to the plasma. It is shown that in usual plasmas it is unlikely that the body motion excites plasmons.
阻力通过气体和等离子体
气体中的阻力(以前由斯托克斯和瑞利推导)是通过分子动力学(动量的传递方程)推导出来的。确定了两种运动阻力,由速度与热(分子)速度的关系决定。它们对应于小速度时的分子运动,或者对应于高速时的流体动力学运动。在前一种情况下,声波没有被激发,能量因粘度(摩擦)而耗散,而在后一种情况下,能量因声波的激发而耗散。同样,该处理也适用于等离子体。结果表明,在通常的等离子体中,身体运动不太可能激发等离子体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信