An empirical study of the big data classification methodologies

S. Mujeeb, R. Sam, Madhavi Kasa
{"title":"An empirical study of the big data classification methodologies","authors":"S. Mujeeb, R. Sam, Madhavi Kasa","doi":"10.1504/ijbra.2020.10030398","DOIUrl":null,"url":null,"abstract":"The two hasty emanating technologies are big data and cloud computing. Cloud computing is a novel archetype for providing the computing environment in contrast the big data processing technology is convenient for most of the resource types. Now, a productive cloud-based methodology must be devised for the effective management of the big data. This survey presents the distinct cloud-based classification and clustering approaches adopted for the effective big data classification. This paper reviews 40 research papers in the field of big data classification methodologies, like fuzzy classifier, Bayesian model, support vector machine (SVM) classifier, K-means clustering, collaborative filtering based clustering and so on. Moreover, an elaborative analysis and discussion are made by concerning the employed methodology, evaluation metrics, accuracy range, adopted framework, datasets utilised and the implementation tool. Eventually, the research gaps and issues of various conventional cloud-based big data classification schemes are presented for extending the researchers towards a better contribution of significant big data management.","PeriodicalId":434900,"journal":{"name":"Int. J. Bioinform. Res. Appl.","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bioinform. Res. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbra.2020.10030398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The two hasty emanating technologies are big data and cloud computing. Cloud computing is a novel archetype for providing the computing environment in contrast the big data processing technology is convenient for most of the resource types. Now, a productive cloud-based methodology must be devised for the effective management of the big data. This survey presents the distinct cloud-based classification and clustering approaches adopted for the effective big data classification. This paper reviews 40 research papers in the field of big data classification methodologies, like fuzzy classifier, Bayesian model, support vector machine (SVM) classifier, K-means clustering, collaborative filtering based clustering and so on. Moreover, an elaborative analysis and discussion are made by concerning the employed methodology, evaluation metrics, accuracy range, adopted framework, datasets utilised and the implementation tool. Eventually, the research gaps and issues of various conventional cloud-based big data classification schemes are presented for extending the researchers towards a better contribution of significant big data management.
大数据分类方法的实证研究
大数据和云计算是两种快速发展的技术。云计算是提供计算环境的一种新颖的原型,而大数据处理技术则为大多数资源类型提供了便利。现在,必须设计一种高效的基于云的方法来有效地管理大数据。本研究提出了不同的基于云的分类和聚类方法,用于有效的大数据分类。本文综述了大数据分类方法领域的40篇研究论文,包括模糊分类器、贝叶斯模型、支持向量机分类器、k均值聚类、基于协同过滤的聚类等。此外,对采用的方法、评估指标、精度范围、采用的框架、使用的数据集和实施工具进行了详细的分析和讨论。最后,提出了各种传统的基于云的大数据分类方案的研究差距和存在的问题,以使研究人员能够更好地为重要的大数据管理做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信