CNN Performance Prediction on a CPU-based Edge Platform

Delia Velasco-Montero, J. Fernández-Berni, R. Carmona-Galán, Á. Rodríguez-Vázquez
{"title":"CNN Performance Prediction on a CPU-based Edge Platform","authors":"Delia Velasco-Montero, J. Fernández-Berni, R. Carmona-Galán, Á. Rodríguez-Vázquez","doi":"10.1145/3349801.3357131","DOIUrl":null,"url":null,"abstract":"The implementation of algorithms based on Deep Learning at edge visual systems is currently a challenge. In addition to accuracy, the network architecture also has an impact on inference performance in terms of throughput and power consumption. This demo showcases per-layer inference performance of various convolutional neural networks running at a low-cost edge platform. Furthermore, an empirical model is applied to predict processing time and power consumption prior to actually running the networks. A comparison between the prediction from our model and the actual inference performance is displayed in real time.","PeriodicalId":299138,"journal":{"name":"Proceedings of the 13th International Conference on Distributed Smart Cameras","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349801.3357131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The implementation of algorithms based on Deep Learning at edge visual systems is currently a challenge. In addition to accuracy, the network architecture also has an impact on inference performance in terms of throughput and power consumption. This demo showcases per-layer inference performance of various convolutional neural networks running at a low-cost edge platform. Furthermore, an empirical model is applied to predict processing time and power consumption prior to actually running the networks. A comparison between the prediction from our model and the actual inference performance is displayed in real time.
基于cpu边缘平台的CNN性能预测
基于深度学习的算法在边缘视觉系统中的实现目前是一个挑战。除了准确性之外,网络架构还会在吞吐量和功耗方面影响推理性能。本演示展示了在低成本边缘平台上运行的各种卷积神经网络的逐层推理性能。此外,在实际运行网络之前,应用经验模型来预测处理时间和功耗。模型的预测结果与实际推理结果进行了实时比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信