Delia Velasco-Montero, J. Fernández-Berni, R. Carmona-Galán, Á. Rodríguez-Vázquez
{"title":"CNN Performance Prediction on a CPU-based Edge Platform","authors":"Delia Velasco-Montero, J. Fernández-Berni, R. Carmona-Galán, Á. Rodríguez-Vázquez","doi":"10.1145/3349801.3357131","DOIUrl":null,"url":null,"abstract":"The implementation of algorithms based on Deep Learning at edge visual systems is currently a challenge. In addition to accuracy, the network architecture also has an impact on inference performance in terms of throughput and power consumption. This demo showcases per-layer inference performance of various convolutional neural networks running at a low-cost edge platform. Furthermore, an empirical model is applied to predict processing time and power consumption prior to actually running the networks. A comparison between the prediction from our model and the actual inference performance is displayed in real time.","PeriodicalId":299138,"journal":{"name":"Proceedings of the 13th International Conference on Distributed Smart Cameras","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349801.3357131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The implementation of algorithms based on Deep Learning at edge visual systems is currently a challenge. In addition to accuracy, the network architecture also has an impact on inference performance in terms of throughput and power consumption. This demo showcases per-layer inference performance of various convolutional neural networks running at a low-cost edge platform. Furthermore, an empirical model is applied to predict processing time and power consumption prior to actually running the networks. A comparison between the prediction from our model and the actual inference performance is displayed in real time.