{"title":"Image Registration via Geometrically Constrained Total Variation Optical Flow","authors":"M. Shoeiby, M. Armin, A. Robles-Kelly","doi":"10.1109/DICTA.2018.8615805","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method for registration of image pairs. Our method relates both images to one another for registration purposes making use of optical flow. We formulate the problem in a variational setting making use of an L1-norm fidelity term, a total variation (TV) criterion, and a geometric constraint. This treatment leads to a cost function, in which, both the total variation and the homographic constraints are enforced via regularisation. Further, to compute the flow we employ a multiscale pyramid, whereby the total variation is minimized at each layer and the geometric constraint is enforced between layers. In practice, this is carried out by using a Rudin-Osher-Fatemi (ROF) denoising model within each layer and a gated function for the homography computation between layers. We also illustrate the utility of our method for image registration and flow computation and compare our approach to a mainstream non-geometrically constrained variational alternative elsewhere in the literature.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a method for registration of image pairs. Our method relates both images to one another for registration purposes making use of optical flow. We formulate the problem in a variational setting making use of an L1-norm fidelity term, a total variation (TV) criterion, and a geometric constraint. This treatment leads to a cost function, in which, both the total variation and the homographic constraints are enforced via regularisation. Further, to compute the flow we employ a multiscale pyramid, whereby the total variation is minimized at each layer and the geometric constraint is enforced between layers. In practice, this is carried out by using a Rudin-Osher-Fatemi (ROF) denoising model within each layer and a gated function for the homography computation between layers. We also illustrate the utility of our method for image registration and flow computation and compare our approach to a mainstream non-geometrically constrained variational alternative elsewhere in the literature.