TedGram: Twitter Event Detection using Graphbased Methods

Zahra Akhgari, M. Malekimajd, H. Rahmani
{"title":"TedGram: Twitter Event Detection using Graphbased Methods","authors":"Zahra Akhgari, M. Malekimajd, H. Rahmani","doi":"10.1109/ICWR54782.2022.9786233","DOIUrl":null,"url":null,"abstract":"The proliferation of social networks has made researchers turn to the analysis of these networks. Event detection is one of the important topics in the analysis of social networks, especially Twitter. In this paper, we propose an online graph-based approach, called TedGram, for event detection in Twitter using word embedding techniques and graph partitioning algorithms. In the TedGram model, for each incoming tweet, candidate tweets are gathered from preceding tweets using co-occurrence in entities keywords, and correspondingly the similarity between tweets are computed using the Word Mover’s Distance (WMD) algorithm and pretrained word2vec model. In this regard, the TTI (Tweet Tweet Interaction) graph is computed and updated using an online greedy community detection method based on the Barabási-Albert generative model. Furthermore, we utilize Latent Dirichlet Allocation (LDA) and WMD to combine duplicate communities for detecting and merging duplicate events. Our proposed method is applied to a sample of the Event2012 dataset and is evaluated regarding Precision, Recall, and Fscore. The experimental results show that TedGram performs well against the existing methods.","PeriodicalId":355187,"journal":{"name":"2022 8th International Conference on Web Research (ICWR)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Web Research (ICWR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWR54782.2022.9786233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The proliferation of social networks has made researchers turn to the analysis of these networks. Event detection is one of the important topics in the analysis of social networks, especially Twitter. In this paper, we propose an online graph-based approach, called TedGram, for event detection in Twitter using word embedding techniques and graph partitioning algorithms. In the TedGram model, for each incoming tweet, candidate tweets are gathered from preceding tweets using co-occurrence in entities keywords, and correspondingly the similarity between tweets are computed using the Word Mover’s Distance (WMD) algorithm and pretrained word2vec model. In this regard, the TTI (Tweet Tweet Interaction) graph is computed and updated using an online greedy community detection method based on the Barabási-Albert generative model. Furthermore, we utilize Latent Dirichlet Allocation (LDA) and WMD to combine duplicate communities for detecting and merging duplicate events. Our proposed method is applied to a sample of the Event2012 dataset and is evaluated regarding Precision, Recall, and Fscore. The experimental results show that TedGram performs well against the existing methods.
使用基于图的方法进行Twitter事件检测
社交网络的激增使得研究人员转向对这些网络的分析。事件检测是社交网络尤其是Twitter分析中的重要课题之一。在本文中,我们提出了一种基于在线图的方法,称为TedGram,用于使用词嵌入技术和图划分算法在Twitter中进行事件检测。在TedGram模型中,对于每条传入的推文,使用实体关键词共现的方法从之前的推文中收集候选推文,并相应地使用Word Mover’s Distance (WMD)算法和预训练的word2vec模型计算推文之间的相似度。为此,使用基于Barabási-Albert生成模型的在线贪婪社区检测方法计算并更新TTI (Tweet Tweet Interaction)图。此外,我们利用潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)和WMD组合重复社区来检测和合并重复事件。我们提出的方法应用于Event2012数据集的样本,并对精度、召回率和Fscore进行了评估。实验结果表明,与现有的方法相比,TedGram具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信