Research on identification of main cotton pests based on deep learning

Liu Xinmao, Liu Yihui, Xu Mingl, Tang Shuijiaol, Ma Zhandong
{"title":"Research on identification of main cotton pests based on deep learning","authors":"Liu Xinmao, Liu Yihui, Xu Mingl, Tang Shuijiaol, Ma Zhandong","doi":"10.1109/DTPI55838.2022.9998883","DOIUrl":null,"url":null,"abstract":"According to the phototaxis of cotton bollworm adults, the self-developed cotton bollworm adult trapping and photographing monitoring device automatically obtains images of cotton bollworm adults; the target detection algorithm YOLO v5 is used to identify and count the cotton bollworm adults on the monitoring equipment; comparison The detection performance of different training models on images of H. armigera adult images was evaluated, and the differences of each model were evaluated by precision rate, recall rate, F1 value and average precision. The test results show that high recognition accuracy can be achieved when using the monitor to collect images of the test set as the training set.. It can improve the current situation of low automation of cotton bollworm adult identification, and can be used for the actual field monitoring of cotton bollworm adults.","PeriodicalId":409822,"journal":{"name":"2022 IEEE 2nd International Conference on Digital Twins and Parallel Intelligence (DTPI)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Digital Twins and Parallel Intelligence (DTPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTPI55838.2022.9998883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

According to the phototaxis of cotton bollworm adults, the self-developed cotton bollworm adult trapping and photographing monitoring device automatically obtains images of cotton bollworm adults; the target detection algorithm YOLO v5 is used to identify and count the cotton bollworm adults on the monitoring equipment; comparison The detection performance of different training models on images of H. armigera adult images was evaluated, and the differences of each model were evaluated by precision rate, recall rate, F1 value and average precision. The test results show that high recognition accuracy can be achieved when using the monitor to collect images of the test set as the training set.. It can improve the current situation of low automation of cotton bollworm adult identification, and can be used for the actual field monitoring of cotton bollworm adults.
基于深度学习的棉花主要害虫识别研究
根据棉铃虫成虫的趋光性,自行研制的棉铃虫成虫诱捕拍照监测装置自动获取棉铃虫成虫图像;采用目标检测算法YOLO v5对监测设备上的棉铃虫成虫进行识别和计数;比较不同训练模型对成虫图像的检测性能,通过准确率、查全率、F1值和平均准确率评价各模型之间的差异。测试结果表明,利用监视器采集测试集的图像作为训练集,可以达到较高的识别精度。该系统可改善棉铃虫成虫鉴定自动化程度低的现状,可用于棉铃虫成虫的现场实际监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信