Deep sparse representation for Super-Resolution Image Reconstruction

Yan Li, Chenjin Wu, Yi Chen, Hua Shi
{"title":"Deep sparse representation for Super-Resolution Image Reconstruction","authors":"Yan Li, Chenjin Wu, Yi Chen, Hua Shi","doi":"10.1109/WCEEA56458.2022.00062","DOIUrl":null,"url":null,"abstract":"Image reconstruction is an important research direction in computer vision. In this paper, a deep sparse representation model is proposed for super-resolution image reconstruction. We firstly study the decomposition of sparse coefficients and the construction of over-complete dictionary, and then use the K- VSD algorithm to extract the image sparse feature. Finally the deep feature migration model is designed to refine image features with deep convolutional neural network (CNN). The experiments carry out on the perspective single-channel, multi-channel and pixel-wise amplitude reconstruction. Both subjective assessments and objective metrics demonstrate that the proposed method has a good reconstruction effect.","PeriodicalId":143024,"journal":{"name":"2022 International Conference on Wireless Communications, Electrical Engineering and Automation (WCEEA)","volume":"2 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Wireless Communications, Electrical Engineering and Automation (WCEEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCEEA56458.2022.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image reconstruction is an important research direction in computer vision. In this paper, a deep sparse representation model is proposed for super-resolution image reconstruction. We firstly study the decomposition of sparse coefficients and the construction of over-complete dictionary, and then use the K- VSD algorithm to extract the image sparse feature. Finally the deep feature migration model is designed to refine image features with deep convolutional neural network (CNN). The experiments carry out on the perspective single-channel, multi-channel and pixel-wise amplitude reconstruction. Both subjective assessments and objective metrics demonstrate that the proposed method has a good reconstruction effect.
超分辨率图像重建的深度稀疏表示
图像重建是计算机视觉中的一个重要研究方向。本文提出了一种用于超分辨率图像重建的深度稀疏表示模型。首先研究了稀疏系数的分解和过完备字典的构造,然后利用K- VSD算法提取图像的稀疏特征。最后设计了深度特征迁移模型,利用深度卷积神经网络(CNN)对图像特征进行细化。实验分别进行了透视单通道、多通道和逐像素幅值重建。主观评价和客观指标均表明该方法具有良好的重建效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信